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Abstract

Old style electrodynamic hypothesis is required hypothetical preparation for
physicists and specialists working with molecule gas pedals. Fundamental and
experimental peculiarities are surveyed and lead to Maxwell's situations, which
structure the system for any computations including electromagnetic fields. Some
fundamental numerical foundation is remembered for the addendums so the peruser
can follow the work and the shows utilized in this text. Plane waves in vacuum and in
various media, radio recurrence cavities, and engendering in a waveguide are
introduced.
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Introduction

Together with classical mechanics, quantum theory, and thermodynamics, the
theory of classical electrodynamics forms the framework for the introduction to
theoretical physics. Classical electrodynamics can be applied where the length
scale does not require a treatment on the quantum level. Although both electricity
and magnetism can exert forces on other objects, they were for a long time treated
as distinct effects. The empirical laws were unified in a single theory by Maxwell
and culminated in the prediction of electromagnetic waves. Although very
successful in describing most phenomena, it is not possible to reconcile the theory
with the concepts of classical mechanics. This was solved by the introduction of
special relativity by Einstein, in studying the effects of moving charges. This
reformulation not only explained the origin of such effects as the Lorentz force,
but also showed that electricity and magnetism are two different aspects of the
same underlying physics. Since in accelerator physics we are mainly concerned
about moving charges, the topic of special relativity is treated in a separate lecture
at this school [1].

This paper touches on many different areas of electromagnetic theory, with a
strong focus on applications to accelerator physics [2]. It covers the field of
electrostatics and the equations of Gauss and Poisson, magnetic fields generated
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by linear and circular currents, and electromagnetic effects in vacuum and
different media, and leads to Maxwell’s equations [3-5].

Electromagnetic waves and their behaviour at boundaries and in waveguides
and cavity resonators are treated in some detail. Because of their importance, such
phenomena as polarization and propagation in perfect and resistive conductors are
presented.

The paper is intended as a recapitulation for physicists and engineers and
mathematical subtleties are avoided where it is acceptable.

This paper cannot replace a full course on electromagnetic theory. This is, in
particular, true for students less familiar with this subject. Although they will not
be able to understand everything in this lecture, it is attempted to provide access
to the core material and the direct features relevant for accelerator physics.

The background required is a knowledge of calculus and differential
equations; some more advanced concepts, such as vector calculus are summarized
in the appendices.
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Fig. 1: Charges enclosed within a closed surface

Electrostatics

Electrostatics deals with phenomena related to time-independent charges. It was
found empirically that charged bodies exert a force on each other, attracting in the
case of unlike charges or repelling for charges of equal sign. This is described by
the introduction of electric fields and the Coulomb force acting on the particles.
Charges are the origin of electric fields, which form a vector field.

Gauss’s theorem
The fields of a distribution of charges add to form the overall field and the latter
can be computed when the distribution of charge is known. This treatment is based
on the mathematical framework worked out by Gauss and others and is
summarized in Gauss’s theorem. Gauss’s theorem in its simplest form is
illustrated in Fig. 1.
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We assume a surface S enclosing a volume V', within which are charges: ¢1,¢
..., producing electromagnetic fields E~ originating from the charges and passing
through the surface (Fig. 1).

Summing the normal component of the fields passing through the surface,
we obtain the flux ¢:

v~ [ Foida=%"%_C

@ L nd z?: -y (1)
where ~n is the normal unit vector and E~ the electric field at an area element d4
of the surface. The surface integral of E~ equals the total charges Q inside the
enclosed volume. This holds for any arbitrary (closed) surface S and is:

- independent of how the particles are distributed inside the
volume; — independent of whether the particles are moving or at
rest;

- independent of whether the particles are in vacuum or material.

Using Gauss’s formula (see Appendix B), we can formulate the theorem as:

R R 2 _Q
ZSE~’dA~=ZV -V = OZ= PE
Edr=" VE -dv=" wwE-dv : @
(relates surface and volume integrals)
|5 —{z - }

GaussOs formula
It follows that from Eq. (2):

E
div

o, 3)

Fig. 2: Flux through a surface element created by a single point charge

which is Maxwell’s first equation.

As a physical picture, the divergence ‘measures’ outward flux ¢ of the field.
The simplest possible example is the flux from a single charge g, shown in Fig. 2.
A charge g generates a field E~ according to (Coulombs law):
o1 T
b= Ameg 13, 4)

It is enclosed by a sphere and obviously E~ = const. on a sphere (area, 47 - ?):

| B [ a4
[
. sphere dmep | sphere T’ €0 | (5)
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The surface integral through the sphere 4 equals the charge inside the sphere (for
any radius of the sphere), consistent with Eq. (1).

2.2Electrostatic potential and Poisson’s equation

We can derive the field E~ from a scalar electrostatic potential ¢(x,y,2), i.e.,

o , do do O
B = —grad ¢ =~V = (aa—yﬁ)

(6)

then we have

- . Py Po ¢ plz,y, z)
— 2 h— — | —— _ —_ ) = 1S
VE=-V" (81‘2 + Oy? + Bzz) €

This is Poisson’s equation.

Once we can compute ¢ for a given distribution of the charge density p, we
can derive the fields. As an example, the simplest possible charge distribution is
an isolated point charge with the potential:

o q
o(r) = dmegr

— —V(r) =

7
"3

4ﬂ'€0

As a realistic case, we assume a distribution p(x,y,z) that is Gaussian in all
three dimensions:

B (2 2 2)
pla,y,2) = ———=exp|~55 ~ 5553
’ Op0y0 V273 202 207 202

(0, 0y,0- are the r.m.s. sizes).
The potential ¢(x,y,z,0y,0,,0-) becomes (see e.g., Ref. [6]):

2 2 22
Q o0 EXp 20’2+i‘ 202+t 202+t d

@(57;: Y, 2,02, Ty, (72)

; .
e, \/ (202 + 1) (202 + 1)(202 + 1) 7

Morth Pole

South Pole

Fig. 3: Field lines between magnetic dipoles

In many realistic cases, the charge distribution shows a strong symmetry,
Then we can rewrite the Poisson equation and obtain some very important
formulae in practice. Poisson’s equation in polar co-ordinates (7,¢):

18 80‘) +i02¢7_£
ror \"or r20p? g ; (8)

Poisson’s equation in cylindrical co-ordinates (7,¢,z):
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L0 (06), 15, P p
r20p? 1 922 €0 ; (9)

ror ' or -
Poisson’s equation in spherical co-ordinates (7,6,9):
10 [ ,00 1 o (. 00 1 9% P
| e — [ sin @— - T =
r2or (I @1‘) + r2sin @ 90 (sm 89) + r2 sin 0 D2 €0 . (10)

Examples for solutions of these equations are found in Ref. [3].

Magnetostatics

In the treatment of magnetostatic phenomena, we follow the strategy developed
for electrostatics. The striking difference is the absence of magnetic charges, i.e.,
magnetic ‘charges’ occur only in combination with opposite ‘charges’, i.e., in the
form of a magnetic dipole.

The field lines between magnetic poles for a magnet and the Earth’s magnetic
field are shown in Fig. 3.

We start with some basic definitions and properties.

- Magnetic field lines always run from north to south.
- They are described as vector fields by the magnetic flux density B~.
- All field lines are closed lines from the north to the south pole.

Gauss’s theorem

We follow the same procedure as for electrostatic charges and enclose a magnetic
dipole within a closed surface Fig. 4.

From very simple considerations, it is rather obvious that field lines passing
outwards through the surface also return through this surface, i.e., the overall flux
is zero. This is formally described by Gauss’s second theorem, for magnetic fields:

/S BdA = /1 VBdV = 0. (1)

Fig. 4: Closed surface around magnetic dipole

Fig. 5: Static electric current inducing an encircling (curling) magnetic field
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This leads to Maxwell’s second equation:

VB~=0. (12)

The physical significance of this equation is that magnetic charges (monopoles)
do not exist (although Maxwell’s equations could easily be modified if necessary).

Ampere’s law
Static currents produce a magnetic field described by Ampere’s law
(Fig. 5). Assuming a current density~j, we can compute the
magnetic field:

curlB =V x B = uj , (13)

or in integral form, where the current density becomes the current /,

//AV X Edj: /L#l)jdf_f— ;L(]f. (14)

For a static electric current I in a single wire (Fig. 6), we get the Biot—Savart
law (we have used Stoke’s theorem and the area of a circle,

A=r2.m):
B 1o 7. ' x.%ds

47 / 7o (15)
5 fol

2T r

Time-varying electromagnetic fields
Extending the subject of static electric and magnetic fields opens a large range of

new phenomena.
Furthermore it shows a close connection between electricity and magnetism.

\ =
| ~

Induced magnetic
field

Fig. 6: Induced magnetic fields by static current

late capacitor
ternati

Fig. 7: Maxwell’s displacement current, e.g., charging capacitor

Maxwell and time-varying electric fields
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We need to address the question of whether we need an electric current to produce
magnetic fields. This was addressed by Maxwell, which led him to the
introduction of the displacement current~jq.

We define this displacement current by:

- ea ey [ [ = Edde (16)
arca

It must be understood that this is not a current from moving charges but from time-

varying electric fields.

The displacement current /s produces magnetic fields, just like ‘actual
currents’ do. An example for a displacement current is a charging capacitor (Fig.
7).

Time-varying electric fields induce magnetic fields (using the current density
ja). We can formulate this as:

- ~ OE
V x B = pjd= fU.U*(JE. (17)
The bottom line of this result is that magnetic fields B~ can be generated in two
ways:
VxB= M().’F (18)
are the magnetic fields produced by an electric current (Ampére), while
- - OF
V x B = poja = €opo—F,

ot (19)

are the magnetic fields produced by a changing electric field
(Maxwell). Putting them together we obtain Maxwell’s
third law:

v B‘ (—'+ .—‘) —.‘+ E)E
b = = COHO
HolJ T+ Jd HoJ OHO ar (20)

Using Stoke’s formula, this can be rewritten in integral form:

: z z o' Q1)
lCB.d~= {éVx B-d/i= A MO+ ouo 5. -dA

Stokes formula
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Fig. 8: Electromotive force (EMF) produced by changing magnetic flux

Faraday’s law and varying magnetic fields

Assuming a conducting coil in a static magnetic field B~ (Fig. 8). The area
enclosed by the coil should be 4. Changing the magnetic flux Q through the area
A produces an electromotive force (EMF) in the coil resulting in a current /:

Qutgmi fluxEMF =1 E~ - d~s,
(22)
C
‘%“%ﬁﬁﬂiﬁd$ (23)
fluxQ
_% _ —L%Edﬂ: ) Eds. (24)

The magnetic flux can be changed by:

— moving the magnet relative to the
conducting coil; — moving the coil relative
to the magnet.

Ampere and Maxwell’s law

In a more general form, this can be written using Stoke’s formula, which relates

line integrals and surface integrals. It is then rewritten as:
Z
OB Z I
- —ar= < Far= Eée . (25)
! E O

Stoke’s formula and we arrive at the well-known formulation:

OB

Ve b= (26)

A changing magnetic field through any closed area induces electric fields in
the (arbitrary) boundary. A sketch demonstrating Stoke’s formula is shown in Fig.
9. This formulation is known as the Maxwell-Faraday law.
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Maxwell’s equations

The empirical concepts and experimental findings can be put together in a set of
differential equations, usually referred to as Maxwell’s equations.

enclosed area (A)

E-ds
closed curve (C)

Fig. 9: Stoke’s formula

Maxwell’s equations in vacuum

Putting together Egs. (3), (12), (20), and (26), Maxwell’s equations in vacuum (so-
called microscopic equations) read:

VPR T A (0
VB =0,
= dB (H)
T i
- - dE ( )
V x B =y .}+FOE
, V) 27)

or, written in integral form (using Gauss’s and Stoke’s theorems):

. . \E
B‘d§=ﬂ-0/ (j'i'&](?)'
) A “) d4.~ (28)

Maxwell’s equations in material

In material, we have to modify the electromagnetic fields £~ and H~ and relate
those to the magnetic induction B~ and electric displacement D~ . In vacuum, we

had:
D=c-E,  B=py-H. (29) In a material, the relations read:
D=¢-c-E=eE+P, (30)
B~=pu:- wo- H~= uoH~+ M .~ (31)
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The origin of these additional contributions are P~olarization and M~ agnetization
in material.

We can summarize:
&(E,7,w) = e~ is relative permittivity = [1-10°];

w(H,~r,c0~) = u, is relative permeability = [0—10¢]. If D~ and
B~ do not depend on the fields £~ and H~, they are linear; if they do not depend
on the direction (~r) or frequency (w), they are isotropic and non-dispersive.

The so-called macroscopic Maxwell’s equations become:

VD~=p,
VB~ =0,
B~
Vx E~ = —d
d
Vx H~=~j +97 (32)

d ¢

Electromagnetic potentials

It was shown that electric fields can be derived from a scalar potential ¢:
E~=-V~o¢p. (33)

Since div B~ =0, we can write B~ using a vector
potential A~:

~=V X~ 4~= (34)
curl4,~

combining Maxwell (I) and Maxwell (II1):
L - 04
E=-Vo—5 (35)

Fields can be written as derivatives of scalar and vector potentials ¢(x,y,z) and
A~(x,y,z). Knowledge of the potentials allows computation of the fields.

Gauge invariance
The equations for the potentials can be directly derived from Maxwell’s equations:
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ag =10 (36)
c ot
and
1024 . 10¢ A -
A v (v A L) - 37

We have two coupled differential equations for the potentials, which may be
difficult to solve for general charge densities and current densities. We shall try to
decouple these equations using a particular property of the potentials. While the
absolute values of the electric and magnetic fields can be measured, the absolute
values of the potentials are not defined. The electromagnetic potentials are merely
auxiliary ‘constructions’, although very important ones, in particular, for the
relativistic formulation of the electromagnetic theory.

Without going into the details, the theory should be invariant under a change
of scale (‘gauge’). The most commonly used is the Lorentz gauge, which yields a

condition between the potentials:

Ag=A+V], (38)
)y =0+ 10 (39)
fe = ot
1A, =0,
1 Op,
S (40)
c Ot

where f'is an arbitrary function of position and time. These equations lead to the
same (measurable) fields and do therefore satisfy Maxwell’s equations. This
‘gauge’ transformation decouples Eq. (36) and Eq. (37) and leads to:

A',T’t_laQ".Tt_ 4 H’f‘
G)(f, ) = (/—28?(.0(?, ) = —47 .p(:r’ ) (41)
A= 1 62 I 47 20
AA(?,t):E@A(r,ﬂ_—T.J(v,f). (42)

We observe two consequences: first, the equations for the potentials are decoupled
and depend only on the charge density and current density. Second, without
charges or current, the equations have the form of a wave equation. The relevance
becomes clear later, in particular, when Maxwell’s equations are written in a

relativistically invariant form [1].

Another very useful gauge is the Coulomb gauge:

V-A4~=0.

(43)

This leads us to a particularly simple expression for the electric potential:
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A@(~r,t) = —4mp(~r,1). (44)

The name ‘Coulomb gauge’ becomes obvious.
A formal solution can now be written as:

¢ = /@dv.
= (45)

Example: Coulomb potential

Equation (45) can immediately be applied to compute the Coulomb potential of a
static charge g:

1 q , (46)

N 471'6[) . |F ’F}; _ |

()
where ~7 is the observation point and ~7, the location of the charge.

Powering and self-induction

There are also induction effects in a single coil. A varying current (e.g., in a
transformer or power line) produces a varying magnetic field inside itself and the
flux of this field is continually changing, leading to a self-induced electromotive
force (Fig.10). This electromotive force (EMF) is acting on any current when it is
building up a magnetic field or when the field is changing in any way. This effect
is called selfinductance. According to Lenz’s rule, this EMF is opposing any flux
change. The direction of an induced EMF is always such that it produces a flux of
B~ that opposes the change of the flux that produces the EMF. It tries to keep the
current constant: it is opposite to the current when the current is increasing and in
the direction of the current when it is decreasing.

This effect is particularly important for particle accelerators. A large
electromagnet will have a large self-inductance. To change the current / in such a
magnet requires a minimum voltage U to overcome this effect. This voltage is
computed as:

oI
U=-L%. (47)

primary magnetic field  induced magnetic field

(| :
|| = =

\_// | primary  induced|
current  current 4\ _ /
X/

magnetic field building induced current tries
to stop field building

Fig. 10: Self-induction by a changing electric current

The self-inductance L is measured in henrys (H).

The necessary voltage is determined by this self-inductance and the rate of
change of the current (Eq. (47)).
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As a numerical example, we use the Large Hadron Collider parameters:

- required ramp rate, 10 A/s;

- self-inductance, L = 15.1 H per powering sector; —
required voltage to ramp at this rate, =150 J'.

Lorentz force
A charge experiences forces in the presence of electromagnetic fields. This force
depends not only on where it is (which determines the electromagnetic fields), but

also on how it is moving. Moving (~v) charged (g) particles in electric (E~) and
magnetic (B~) fields experience the force /~ (Lorentz force):

f~=q (E~+~vxB~). (48)

The electric force g - E~ is always in the direction of the field £~ and proportional

to the magnitude of the field and the charge.

The magnitude of the magnetic force ¢ -~v x B~ is proportional to the
velocity perpendicular to the direction of the field 3-.

The Lorentz force is often treated as an ad-hoc plug-in to Maxwell’s
equation, but it is a relativistic effect (shown in Ref. [1]).

Electromagnetic waves in vacuum

A remarkable success of Maxwell’s equations was the prediction of
electromagnetic waves. Their existence was proven experimentally for very
different wavelengths; in all cases, they were found to satisfy Maxwell’s
equations.

Starting from V X E~ = —0B/0t~ , we can apply several mathematical
transformations in steps:

!

— V x (VxE)=-Vx (8—‘9
ot
= —(VQE) — —i)(V X E)
Ot
Y = 9’E
= —(VZE) = —l0€0—F 5
ot (49)

The last equation has the form of a plane wave.

Electric

Field
Magnetic
Field

: :::- 7 ycle

7 4
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Fig. 11: Propagating electric and magnetic fields

This wave happens to be

1
o - € =
Ho-€0= 3
and we rewrite:
.1 0%E PE
20
VIE=Gom T g
and
S 10°B 0B
2
B = — - = . —_—
VIE=009a TH o G (50)
27 w
k| = =
Ikl = = .
A 3
W,
W
c = .
. . . k
This is a general form of a wave equation.
As a solution of these equations, we can
write:
P E“Oci(E-F—wt)
B = Boe'™ ™! where we use the following (51)

definitions:

propagation vector :,
wavelength, I cycle(52) frequency - 2z : wave velocity :

Magnetic and electric fields are transverse to the direction of propagation (Fig.
11):

E1LBLlk = kxEy=wB,

The speed of the wave in vacuum is exactly the speed of light: ¢ =299792458
m/s. Examples of the spectrum of electromagnetic waves are shown in Fig. 12 and
Table 1.

The frequencies and, therefore, energies of existing waves span about 20
orders of magnitude.

Polarization of electromagnetic waves
General features

The solutions of the wave equations imply monochromatic plane waves. The
solutions for electric and magnetic fields are:

- E‘Oei(E-Ffwf.)
b

(53)
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Fig. 12: Electromagnetic spectrum

Table 1: Properties of parts of the electromagnetic spectrum

Type FrequencyEnergy per photon
Radio aslowas (.10-3¢eV)
40 Hz
Cosmic Microwave Background .3 - 1014!' (.10—3eV)
Yellow light HzHz
X rays . -
7 rays <3- 1021:5 1018 > .
> Hy ((((===701242
B keVeVMeVMeV))
<110 Hz))
2 107
Hz
b— ﬁooi(E-F—mt). (54)

These equations can be rewritten using unit vectors in the plane transverse to
propagation. For example, for the electric component:

aleélk.
The two orthogonal components are:
By = & Byelkrwt)

E2 — C3E2Ci(k-r—wt) )

The general field is a superposition of the two components:

= E = (El + EQ) = (61E1 + EﬂgEz)Ci(k'Fiwt). (55)

For the propagation, we can allow for a phase shift ¢ between the two
directions as well as different amplitudes:

E = GEd®mw | g pyiEr-wtte)

Depending on the amplitudes £1 and E> and the relative phase ¢, we get
different types of polarized light:
p=0: linearly polarized light;
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¢ 6=0and E; 6= E> : elliptically

A — E ) —
polarized light; ¢ = 5 24 21 = £2.

circularly polarized light.
Polarized light in accelerators

Polarized light is rather important in accelerators and is produced (amongst others)
in synchrotron light machines (linearly and circularly polarized light, adjustable).

Typical applications and phenomena of polarized light are:

- polarized light reacts differently with charged particles;

- material science;

- beam diagnostics, medical diagnostics (blood sugar, ...);

- inverse free electron lasers;

- 3-D motion pictures, LCD display, outdoor activities, cameras (glare), ...

Energy of electromagnetic waves
We define the Poynting vector (S1
units):

ExB.

g_ 1
5= Ho (56)

The vector S~ points in the direction of propagation and describes the ‘energy
flux’, i.e., energy crossing a unit area, per second [J / m?s].

In free space, the energy in a plane is shared between the electric and
magnetic fields The energy density H would be:

1 1
H = 5 (€0E2 -+ Bz)

o (57)

Electromagnetic waves in material

We start now with the macroscopic Maxwell’s equations (Eq. (32)), using
,uof_f — B and eUE = f);

V x E~=—y 4~ 0= s

a . (58)

We assume a material with relative permittivity and permeability u, as well as a
finite conductivity o, and get:

V x E~=—pu - po- %~

VxH=0E+ - 0'%, (59)
t
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where the current density~j is replaced by 6E~ (Ohm’s law). Following the same

procedure as before, we obtain for the wave equation (electric field only):
- OE O°E
VZE:U-(-(O-W—FH-/}.U-(,-(O-W (60)

For non-conducting media, we can set ¢ = 0 and obtain the previous equations.
As a direct consequence of Eq. (60) we see that the speed of this wave in the medium

1S NOW:
1
V= ——
Eo " Ho € K, (61)
Material 1 Material 2 Material 1 Material 2
€yt €2 2 IV € 2
Et
D
_+ n

Fig. 13: Boundary conditions for electric fields

[SSN NO : 1844-8135
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Material 1 Material 2 Material 1 Material 2
eyt € 2 gt € p2
Ht
B
__—_ n

Fig. 14: Boundary conditions for magnetic fields

or, if rewritten using” = V¢ K,
v = ; ) (62)

The speed of electromagnetic waves in vacuum is ¢, but reduced by the factor n
in a medium with relative permittivity and permeability u.

Boundary conditions

When electromagnetic waves pass through the boundary between two media with
different and x4, we must fulfil some boundary conditions. The results are
presented here without proof. For details see Refs. [3, 7]. Assuming no surface
charges and, from curlE~ = 0 we can derive that the tangential E~field is
continuous across a boundary (E/! = E?) (shown schematically in Fig. 13).
Similarly, since we have divD~ = p, the normal D~ -field must be continuous
across the boundary (D,! = D,?) (shown schematically in Fig.13).

We follow the same line of reasoning for the boundary conditions for
magnetic fields. Assuming no surface currents (for a proof, see, e.g., Refs. [3,7]),
we find (see Fig. 14):

From curlH~ =~j,
= tangential H~ -field continuous across boundary (H,' = H?) .

PAGE NO: 245



International Journal of Pure Science Research ISSN NO : 1844-8135

From div B~=0,
= normal B~-field continuous across boundary (B,'! = B,?) .

A short summary for the electromagnetic fields at boundaries between
different materials with different permittivity and permeability (1, c2, p1, 112 ) is:

(Etl = ER) (Enl =6En2),
(D1 =6 (Dnl = Dn2),
D)
(Hnl =6
(Ht1 = Ht2) Hn2),
(Bt1 =6 gi ’;1) -
BR) ' (63)

These conditions lead to reflection and refraction of the waves at the surface; the
angles are related to the refraction index” = Ve and?’ = Vela,

incident wave
reflected wave

refracted wave

Fig. 15: Reflected and refracted components of an incident wave

The connection between the refraction indices and the scattering and
refraction angles shown in Fig. 15 are:

!

sina .
sind  n a QB, (64)
Ife  randdepend on the wave frequency w, the medium is dispersive and we have
to write:
dn
_w6=0, (65)

1.e., the refraction index and therefore the angles depend on the wavelength.

If light is incident under the special angle og (the Brewster angle) [3], the
reflected light is linearly polarized perpendicular to the plane of incidence.

A popular application is used when fishing, since air—water gives a
comfortable angle aB = 53¢ 4nd reflections can be avoided using polarization glasses.

Cavities and waveguides
Of particular interest in accelerator physics and technology is the behaviour and

propagation of electromagnetic waves in cavities and waveguides. This behaviour
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is determined by the boundary conditions and we have to distinguish between
material with infinite and finite conductivity. The case of perfectly conducting
cavities and wave guides is treated first.

Rectangular cavities and waveguides

Cavities can be seen as a three-dimensional storage for electromagnetic waves,
1.e., photons. The wave functions are contained inside and therefore the
dimensions determine the maximum wavelength that can fit inside. This is due to
the boundary conditions at the cavity walls.

If the fields are only constrained in two dimensions and allowed to move
freely in the third dimension, the fields propagate as waves. The waves are guided
through these ‘wave guides’. Both are sketched in Fig. 16.

Cavities and modes

We assume a rectangular RF cavity with dimensions (a,b,c), and as an ideal
conductor.

Without derivations (e.g., Refs. [3,7,8]), the components of the electric fields
are:

Ex:ExO : COS(kxX) : Sil’l(kyy) . Sin(kzz) . e_ia)t’

Ey,=Ey - sin(kx) - cos(ky)) - sin(kzz) - e—*,

Z
P~~~ R
z
™~z

b b N N N

\

c
y y

Fig. 16: Boundary conditions for electromagnetic fields. Fields are fully enclosed
in a cavity (left-hand side) and can move freely in one dimension in waveguides
(right-hand side).

’Modes’ in cavities

Fig. 17: Boundary conditions for electromagnetic fields
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E-= E. - sin(kwx) - sin(k,y) - cos(k:z) - e, (66)
For the magnetic fields we get immediately, with V x E~ = —0B/0t~
i 1wt
B.=(E,ok-— E-oky) - sin(kx) - cos(k,y) - cos(k:z) - €
, @
: Bt ittt ittt tieeneneanenseneneonenensencnnns ia)t’
@
i — . . . . iwt_ (67)
B-=(Exwk,  Eyokx) cos(kwx) cos(k,y) sin(k.z) e—

)

Consequences for cavities

The fields must be zero at the conductor boundary, as shown before. This is
possible only with the condition:

o

2 | 1.2 2 W
etk k= (68)
and for k&, k- we can write:
My T My m,T
vy — N iy — N k‘z =
ks a by b - c . (69)

The integer numbers m,,m,,m. are called the mode numbers of the wave and are
directly related to the dimensions of the cavity.

Equations (68) and (69) imply that a half wavelength 4/2 must always fit
exactly the size of the cavity. This is shown in Fig. 17 for different wavelengths
compared with the cavity dimensions. Only modes that ‘fit’ into the cavity are
allowed.

We can examine three cases:
A a A a A a

24 2 1" 2 08.

No electric field at the boundaries requires that the wave must have ‘nodes’ at the
boundaries. Only the first two wavelengths fulfil this condition; the third form
cannot exist.

VOLUME 12, ISSUE 1, 2025 PAGE NO: 248



International Journal of Pure Science Research ISSN NO : 1844-8135

Waveguide modes

Similar considerations lead to (propagating) solutions in (rectangular)
waveguides:

Ex = Ex0 - cos(kxx) - sin(kyy) - ei(kzz—wt),

Ey=E)0 - sin(kxx) - cos(kyy) - ei(kzz—wt),
E.=1i-E.-sin(kyx) - sin(k,y) - elF==7«t)

B, = —(Eyk. — E.ok,) - sin(kyx) - cos(kyy) . gilkzz—wt) (70)

| —E |~

B, = —(E.oks — Exok.) - cos(kzx) - sin(kyy) - pllkzz—wi) ,

I

1

&

B, = ii(E:r:D'I":y - EyUk:::) ’ COS(!&‘;;,;I‘) 'C'OS(k'yy) : ei(kzz—wf.)
W
(71)
Consequences for waveguides
To have no field at the boundary, we must again satisfy the condition:
2
2 1.2 2 %
othyth=z (72)
This leads to modes like (no boundaries in direction of propagation z):
b — MmqT ko= mym
T oa YT, (73)

The numbers m,,m, are called the mode numbers for planar waves in waveguides.

Cut-off

frequency One can
rewrite Eq. (72) as:

2 .2 .2
=E kT (74)
and
ke = . (75)
A propagation without losses requires £: to be real, i.e.,
w? MpT 2 TH, T 2
zekei= () + () (76)
This defines a cut-off frequency wc:
T C
YT e (77)

For frequencies above this cut-off frequency, we have propagation without losses.
At the cut-off frequency, we obtain a standing wave and an attenuated wave for
lower frequencies, i.e., k- becomes complex.
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The cut-off frequencies are different for different modes and no modes can
propagate below the lowest frequency. The mode of Eq. (77) is assumed to be this

lowest frequency mode.
Circular cavities

Waveguides and cavities used in accelerators are more likely to be circular.

Derivation involves using the Laplace equation in cylindrical co-ordinates;

for the derivation see e.g., Refs. [7,8]:

E, = EOA 2 J! (k) - cos(nb) - sin(k,z) - e 79t
nk; - (T —iwt
Ey = Ey—— K2 Jp(ky) - sin(n@) - sin(k,z) - e,

E. = FEoJy(k,r) - cos(nf) - sin(k,z) - e 7%

. w s . . —iwt
B, = 1E0W.I“(k,‘r) -sin(nf) - cos(k.z) - e ,

By = iEU%J,'L(kTT) - cos(nf) - cos(k,z) - et
cAkpr

B,=0.

Accelerating circular cavities

(78)

For accelerating cavities, we need a longitudinal electric field component E. 6= 0

and purely transverse magnetic fields:

E, =0,

Eyg =10,

E. = EyJy (me) et
B, =0,

B{J' p— _1_0 ]] ([)0]%) . C*lwi
B.=0.

(pnm1s the mth zero of J,, e.g., po1 = 2.405.)

This would be a cavity with a TMgio mode: @woi0= po1 - ¢/R.

Case of finite conductivity
Starting from Maxwell’s equation,

. . 4D = dE
H= = 0-E +e—
V x i+ — 7 o +e€ r
Ohm’s law

and the solutions of the wave equations,

- E‘Oci(E-F—wt): i— Hoei(E-
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we want to know k; applying the calculus to the wave equations we have:

- N ddE~t ~ dHN:_iC()'I{,NVXEN:
ik X E,~V % He= ik x H ~ (82)
=—1w ' E, dt

Put these together, using Egs. (80) and (82):
kx H=i0-E—we-E = (—io+we)-E. (83)

B

Fig. 18: Flow of current and induced magnetic fields and eddy currents

With B~ = uH~ :

B _ OH -
o - Mo TR (84)
Multiplication with ~k and using Eq. (83):

VxE=ikxE=—

kx (kx E)=wulk x H) = wu(—io + we) - E . (85)

After some calculus and using the property £~ L H~ 1 ~k:

k% = wplio + we), (86)

The propagation vector & now differs from the equation in vacuum by the
contributions from the medium and the finite conductivity. This has consequences
for the propagation and penetration of waves in material.

Skin and penetration depth
For a good conductor,for very high w):o > we(e.g., for Cu we have 6= 5.7-107 S/m, this
value for Cu is also valid for

.,u,uor

<1—1)—1(1—1>

k? ~ —iwpo = k=

(87)

’= \/% (88)

The parameter ¢ is called the skin depth.

We define the parameter o:
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From Eq. (88), we deduce that high frequency waves ‘avoid’ penetrating a
conductor, and mainly flow near the surface. One can understand this effect using
Fig. 18.

A changing H~ -field induces eddy currents in the conductor. These cancel
the current flow in the centre of the conductor but enforce current flow at the skin
(surface).

Attenuated waves

Waves incident on conducting material are attenuated. It is basically skin depth,

(attenuation to 1/e). The wave form becomes:
ei(kz—wt) = ei((1+1)z/0—wf) = e=£ - ei(*5wf) . (89)

Some numerical examples:
— Skin depth of copper:

This has important consequences for the design of conducting cables since
the high frequencyGHz : 6 ~2.1 um; 1 kHz: 6 =2.1 mm, 50 Hz: 6 = 10 mm.
currents propagate at a very thin layer at the surface of the conductor.

- Penetration depth into seawater (o typically 4 S/m):
To get 6 =25 m, one needs =76 Hz.

Because of the long wavelength and low frequency, communication is very
inefficient and has a very low bandwidth (0.03bps).
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