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Abstract :-Artificial Intelligence (AI) has become a pivotal force in advancing radiotherapy and 

radiopharmaceutical development, enhancing precision, efficiency, and personalization in cancertreatment. 

In radiotherapy, AI-driven tools optimize treatment planning by accurately predicting tumor response, 

automating contouring of target volumes, and adjusting treatment parameters in real-time to accommodate 

anatomical changes during therapy. AI algorithms improve dose distribution and minimize radiation 

exposure to healthy tissues, thereby reducing side effects and improving patient outcomes. 

 
In radiopharmaceutical development, AI accelerates the discovery and design of novel radiotracers by 

analyzing complex datasets and predicting biological behavior and pharmacokinetics. Machine learning 

modelsidentifypotentialtargetsandoptimizemolecularstructuresforbetterdiagnosticandtherapeutic 
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efficacy. AI also facilitates the integration of imaging data to monitor treatment response, allowing for 

adaptive strategies that enhance therapeutic effectiveness. 
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Introduction: 

 

 

The incidence and death of cancer are rising quickly, making it a serious threat to human life. The use of 

targeted therapy in conjunction with diagnostic imaging is growing in popularity as doctors look for 

noninvasive ways to examine tumour morphologies and assess functional and molecular responses to 

treatment [1]. Radiotherapy has a history of improvement along with the advances in diagnostic imaging. 

With the advent of computed tomography (CT), the ability to depict tumors not as shadows but as 3D 

structures has advanced radiotherapy from 2D to 3D.6Medical physicists play a critical role in radiation 

therapy by contributing to the processes of simulation, treatment planning, dose delivery, and post-treatment 

follow-up [2].The adoption of AI in radiotherapy has become increasingly important due to the time-

consuming nature of radiation therapy workflows. These workflows require extensive manual input from 

medical physicists, radiation oncologists, dosimetrists, and radiation therapists, further compoundedby the 

growing prevalence of cancer. AI offers significant advantages by reducing the need for human 

intervention, decreasing workload, and minimizing biases in treatment techniques, thereby enhancing plan 

quality and improving the accuracy and efficiency of treatment planning [3-5]. AI was first introduced in 

1956 during the Summer Research Project held at Dartmouth College in the United States [3, 4].For 

instance, AI enables data from computed tomography (CT) scans to be instantly uploaded to a treatment 

planningsystem,eliminatingtheneedformanualdosecalculations.Moreover,incasesinvolving complex body 

tissues with multiple cross-sections, computerized planning systems utilizing dose 

distributionalgorithmsprovidegreateraccuracyandfeasibilitycomparedtomanualcalculations. However, those 

responsible for planning treatments often have limited familiarity with the theoretical principles underlying 

these algorithms. As a result, individuals other than medical physicists who perform treatment planning 

tasks are likely to become experts in these operations. Consequently, the role of the medical physicist may 

shift away from direct involvement in treatment planning procedures [6]. 
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A common tool for treatment planning is the image registration-based approach. This method utilizes a 

reference set of images, known as an atlas, with predefined organ contours. When a new image is 

introduced, it is matched to the reference images using registration algorithms. The contours from the 

reference images are then transformed onto the new image based on the registration results. However, the 

effectiveness of this approach depends on various factors, such as the choice of atlas and registration 

method.Humanverificationandcorrectionsremainnecessary,ascurrentautomaticsegmentation 

methodslacktheintelligencetofullyemulatehumanexpertise.WithadvancementsinAI,thereis potential for 

mimicking human decision-making, particularly in accurately contouring lesions and organs. 

 

Treatment planning, meanwhile, is a collaborative human-computer interaction aimed at solving an 

optimization problem. The objective is to create an effective treatment plan where the prescribed dose is 

delivered to the tumor while minimizing exposure to surrounding healthy tissues. In this process, humans 

define initial optimization goals—such as the minimum dose to the tumor, tolerated doses for normalorgans, 

and optimization weights—while the computer adjusts treatment parameters, including linear accelerator 

(LINAC) gantry angles and multi-leaf collimator shapes, to meet these goals. Humans then evaluate 

whether the plan achieves the desired outcomes and adjust goals as needed. This process heavily relies on 

the planner's experience, introducing variability and uncertainty in treatment quality. AI, with its 

abilitytoemulatehumanthoughtprocesses,offersapromisingalternativetoenhancedecision-making and 

standardize treatment planning. 

 

Quality assurance (QA) is another critical component in radiotherapy, ensuring that equipment and 

procedures meet specified standards. Radiotherapy involves various equipment, such as LINACs, 

simulators, and laser positioning systems, as well as multiple steps, including CT scanning, tumor 

identification, and treatment plan optimization. Errors in any equipment or step can pose significantmedical 

risks. QA aims to minimize these risks but is influenced by human-dependent factors that 

canaffectprecision. Furthermore,complex QA procedures create additionalworkload for clinics and reduce 

the time available for equipment to be used in treatment. There is a growing need for QA processes to be 

more accurate, efficient, and standardized. AI, with its ability to perform tasks with human-level 

intelligence, presents a compelling solution for improving QA in radiotherapy. 

 

Given the significant potential of AI in these three aspects of radiotherapy—segmentation, treatment 

planning, and quality assurance—it is being actively explored to enhance quality, standardization, and 

efficiency [7-12]. 
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Atranslatableradiopharmaceuticalischaracterizedbyitshighaffinityforthetarget,minimalnon- 

specificbinding,andfavorablepharmacokinetics.Whetherthecompound'sstructureisnovelor resembles an 

existing one, significant effort is needed to ensure its optimal performance. However, even 

withmeticulousdesign,thereisaconsiderablechancethatthecompoundmayfailtoeffectivelyengage its target in 

vivo due to unforeseen factors that were not accounted for during the development phase [13]. 

 

Fig.1StepsinvolvedinRadioTherapy: 
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which a high number of patients (and associated data) are investigated for thepresence or absence of 
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compared to experienced radiologists [14]. At the same time, AI results are being criticized because of the 

lack of transparency and consequently a potential lack of reproducibility [15]. The introduction of AI into 

the operation of radiology departments has led to optimizing resources [16]. Such operational AI should 

prove even more relevant in nuclear medicine (NM), which deals with radioactive isotopes, whose shelf-life 

is limited. 

 

UsingAItoPredictPrognosis:- 

 

 
In recent years, there has been a significant increase in reports on radiomics and prognostication,particularly 

in the field of radiotherapy. While many studies have focused on lung cancer and head andneck cancer, 

rectal cancer remains the most widely studied when compared to overall survival (OS).[17-22]. This trend 

can be linked to the National Comprehensive Cancer Network (NCCN) guidelines, which advocate for 

concurrent chemoradiotherapy followed by surgical resection in cases of locally advanced rectal cancer. 

This recommendation is supported by a systematic review conducted by the ColorectalCancer Collaborative 

Group, which found that preoperative radiotherapy significantly lowers the risk of localrecurrenceand 

mortality in rectalcancer,especially inyoung,high-risk patients [23-24]. Asa result 

ofthisapproach,patientswithlocallyadvancedrectalcancertypicallyundergobothpretreatmentand post treatment 

MRI scans, along with pathological assessments. The current focus is on 

determiningwhetherpathologiccompleteresponseatsurgery canbepredictedusingpre-orpost-CRTimaging[25- 

26]. 

 

Numerousstudieshavedevelopedpredictionmodelsbasedontextualfeatureswithinretrospective, single-

institution analyses, utilizing T2-weighted (T2W) images or diffusion-weighted imaging/apparent diffusion 

coefficient (DWI/ADC) maps in MRI. These studies typically employ training and validation datasets. 

While some have reported highly promising results, the regions of interest (ROIs) are often delineated 

manually. Furthermore, the single-center design and lack of external validation limit the generalizability of 

these models, making it challenging to establish a standardized approach for assessing radiomics efficacy 

with the currently available data. 

To addressthese limitations, manual segmentation canbe replacedwith automatedmethods.Forinstance,a 

recent study by Lietal.introducedan automated pipeline that integratestumor segmentationand outcome 

prediction using pretreatment MRI. In this approach, segmentation was performed using a U-Net model 

with an encoder-decoder structure, and a three-layer convolutional neural network (CNN) was 

usedtobuildpredictionmodels.ThepipelineachievedaDicesimilaritycoefficient(DSC)of0.79for 
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segmentation,acompleteclinicalresponse(cCR)predictionaccuracy of 0.789,aspecificity of0.725,and a 

sensitivity of 0.812 [27-30]. 

Fig.2Processofapproach 
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ApplicationofAIinRadiotherapyPractice 

 
Due to its capacity to provide a realistic physical interaction process in biological tissues, Monte Carlo(MC) 

simulation has been recognised as the target standard for treatment planning techniques in radiation 

therapy.However,thesesimulationsrequirealargeamountofcomputinganddatastoragepower,are time-

consuming, and are complicated. AI can deliver more effective, convenient, and customisedtherapeutic 

practice in less time by using patient data [31]. 

Radiomics: extraction of features from diagnostic images, the final product of which is a quantitative 

feature/parameter, measurable and mineable from images. A Radiomics analysis can extract over 400 

features from a region of interest in a CT, MRI, or PET study, and correlate these features with each other 

andotherdata,farbeyondthecapability of thehuman eye orbrain to appreciate.Suchfeatures may be used to 

predict prognosis and response to treatment [32-33]. 

 

 

 

ChallengesInRadiopharmaceuticalDevelopmentandPreclinicalEvaluation 

 
Radiopharmaceuticalsareradiolabelledformulationsorprecursorsusedinthepracticeofnuclear medicine for 

diagnostic, therapeutic, and disease surveillance purposes, as well as for research tools in the 

pharmaceutical industry [34]. 

Preclinicalevaluationisanintegralpartoftheradiopharmaceuticaldevelopment.Overtheyears, 

advancesinbiologyandchemistry‐relateddisciplineshaveledtotheuseofvariousmoleculestodevelop a new 

generation of radiopharmaceuticals whose purpose is to deliverradioisotopes to specific targetsatthe cellular 

or molecular level. This necessitates a thorough evaluation of radiolabelled molecules duringthe preclinical 

stage to assess their safety and suitability for the intended clinical application. 
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daily clinical practice, it also holds potential for standardizing treatment protocols in large-scale clinical 

trials. 

Forexample, a study utilizing data from the RTOG0617 trial, which investigated the effect of radiationdose 

escalation on overall survival (OS) in patients with inoperable non-small cell lung cancer, demonstrated this 

potential. Thor et al. compared manual cardiac segmentation performed during the trial with auto-

segmentation using a deep learning algorithm. Their findings revealed that cardiac doses calculated via 

auto-segmentation were generally higher and showed a stronger correlation with OS than those obtained 

through manual segmentation in the clinical trial [35]. Radiotherapy planning aims to standardize tumor 

dosing while imposing constraints on the dose delivered to organs at risk (OARs). However, variations in 

segmentation during the initial stages can impact the evaluation of treatment outcomes. In clinical trials, 

significant time is often spent centrally reviewing and standardizing treatment plans. Achieving automated 

OAR segmentation with dose constraints could not only simplify datacollection but also improve the 

accuracy of treatment efficacy evaluations. Additionally, this approachcould enable a more precise 

assessment of dose adequacy and provide a basis for determining appropriate prescribed doses tailored to 

tumor heterogeneity. 

Using MRI for treatment planning offers the advantage of avoiding unnecessary radiation exposure while 

enablingaccuratecontouring ofcomplex structures,suchastherectum anduterus,which arechallenging to 

delineate with CT. However, MRI-based planning requires the conversion of MRI images to electron 

density maps, as there is no straightforward method to directly correlate electron density with MRI signal 

intensity. AI-driven CT-MRI conversion is being actively developed to address this limitation [36-37]. 

Severalchallengesremaintobeaddressed,suchasvariationsinbonedensity amongindividuals. However, 

advancements in MRI-to-CT conversion research may make it possible to clearly delineate soft tissue 

boundaries—such as the rectum and other structures—by detecting subtle density differences in CT images, 

similar to the capabilities of MRI. This could enable MRI-level segmentation accuracy even in countries 

with limited medical resources, where treatment planning relies solely on CT. The successful integration of 

AI into radiotherapy holds the potential to standardize cancer treatment globally, ensuring equitable access 

to high-quality care [38]. 
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Another promising area in radiotherapy (RT) is the development and application of large-scale language 

models(LLMs).LanguageunderstandinghaslongbeenacentralfocusinAIresearch,evolvingfrom early rule-

basedsystemstotoday’shighly advancedmodels.LLMsaredesignedtolearnpatternsfrom vast amounts of 

textual data, enabling them to understand and generate natural language with remarkable accuracy. 

Significant advancements in LLMs have been achieved, particularly in recent years. A notable example is 

the Generative Pre-training Transformer (GPT) series developed by Open AI. Since the introduction of the 

original GPT model, subsequent iterations—such as GPT-3 and GPT-4—have demonstrated rapid 

advancements in scale and capability [39-40].The rapid advancements in LLMs have equipped these models 

with highly sophisticated capabilities in understanding and generating natural 

language.Thishasenabledawiderangeofapplications,includingquestion-and-answersystems, document 

creation, code generation, and even creative tasks such as poetry and storytelling. 

 

 

 

In the medical field, the potential of LLMs is increasingly being recognized, with applications expanding 

across various areas. These include providing diagnostic support, generating and organizing medical 

documents, aiding in research, assisting in drug selection, supporting telemedicine, analyzing medical 

images, enhancing medical education, promoting preventive healthcare, improving lifestyles, and 

contributing to the design and analysis of clinical trials [41-42]. 

TheapplicationsofLLMsareenabledbytheirabilitytoidentifypatternsinlargedatasetswhile generating natural 

language outputs. However, challenges persist in their use within the medical 

field.Theseincludeconcernsoverdataprivacy,modelinterpretability,risksofmisdiagnosisand misinformation, 

and issues with consistency. Addressing these challenges, including mitigating "AI hallucinations”,requires 

not only technological advancements but also the establishment of appropriate regulations and guidelines. 

In radiotherapy, the continued development of LLMs holds significant promise, particularly in prognosis 

prediction. This will involve integrating diverse data types beyond imaging, such as information on 

concomitant medications and other patient background details, to build comprehensive datasets. 

Additionally, LLMs could predict adverse events and treatment effects while also serving roles in 

preliminary consultations. They may further contribute by disseminating information to patients,simplifying 

medical terminology, and addressing frequently asked questions, enhancing both clinical practice and 

patient engagement [43-45]. 
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Barriers to AI in radiology & challenges 

Data-sets & training 

The availability of large amounts (big data)of medical images in the imaging domain (from PACSsystems) 

offers great potential for AI training, but such data need a so-called “curation” process in whichthe data are 

stratified by patient cohorts, segmented to extract the region of interest for AI interpretation, filtered to 

assess the quality of acquisition and reconstructions, etc [46]. 

 

 

 

Conclusion: 

 
The integration of artificial intelligence (AI) into radiotherapy (RT) marks a transformative shift in how 

cancer treatments are planned, delivered, and evaluated. AI's ability to streamline processes, enhance 

precision, and reduce the workload has already demonstrated its potential to revolutionize RT. From 

outlining complex anatomicalstructuresandautomating treatmentplanning tooptimizing dosedelivery and 

monitoring patient responses, AI offers a level of accuracy comparable to manual procedures but at a 

fraction of the time required. This time efficiency not only improves operationalworkflows but alsoensures 

timely interventions, which is critical in cancer care. 

Despite these promising advancements, challenges remain in fully harnessing AI's capabilities in RT. Oneof 

the primary hurdles is ensuring quality assurance (QA) for AI systems, which can be demanding and 

requires significant involvement from clinical medical physicists. To address this, academic institutions 

must integrate AI-related content into their medical physics curricula, ensuring future professionals are 

equipped to handle these advanced technologies. Furthermore, manufacturers of radiotherapy equipment 

must collaborate closely with qualified medical physicists to incorporate AI tools into their systems while 

adhering to stringent safety and accuracy standards. 

AI’s application in RT spans numerous areas, including organ-at-risk (OAR) and tumor segmentation, 

treatment planning, and QA processes. These advancements have demonstrated significant 

improvementsinperformance,timeefficiency,andworkloadreduction,enablingclinicianstofocusmoreonpatient 

care. However, the technology is still in its early stages, with challenges such as interpretability, accuracy, 

and data privacy requiring further research and refinement. Addressing these issues will be critical in 

expanding AI’s role and ensuring its reliability in clinical practice. 
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Beyond automation, AI offers immense potential in advancing precision radiotherapy. By integrating data 

beyond imaging—such as patient backgrounds, concomitant medications, and other clinical factors—AIcan 

support more accurate prognosis predictions and personalized treatment planning. Additionally, 

AI'sroleinadaptiveradiotherapy,whichadjuststreatmentinreal-timebasedonpatientresponses,highlights its 

ability to delivermore targeted andeffective care.Withtheincorporation of large-scalelanguage models 

(LLMs), AI could further enhance patient engagement by simplifying complex medicalterminology, 

addressing common inquiries, and guiding patients through their treatment journeys. 

The future of AI in RT lies not only in improving technical workflows but also in enhancing the patient 

experience. By automating processes such as segmentation, optimization, and data collection, radiation 

oncologists can allocate more time to patient interactions. This shift will allow for more meaningful 

conversations, fostering trust and improving treatment outcomes. Moreover, AI’s potential to support 

prevention, diagnosis, and treatment extends its impact beyond RT, contributing to the broaderdevelopment 

of precision oncology. 

Inconclusion,whilechallengesremain,theintegrationofAIintoradiotherapyrepresentsasignificant step toward 

standardizing and optimizing cancer care. Continued research and collaboration across academic, clinical, 

and industrial sectors are essential to address current limitations and unlock the full potential of AI in RT. 

As these technologies evolve, they promise not only to enhance treatment accuracy and efficiency but also 

to improve patient outcomes and the overall quality of care in oncology. 
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