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ABSTRACT 

 

The aim ofi the present investigation is to study the vermiculation 

transport through the gap between coaxial tubes, where the outeri tube is 

non regular andi the inner tube is rigid. The necessary theoretical results 

such as viscosity, pressure gradient and friction force on the inner and 

outer tubes have been obtained in terms of viscous Newtonian fluid 

parameter. Out of these theoretical results the numerical solution of 

pressure gradient, outer friction, inert friction and flow rate are shown 

graphically for the betteri understanding of the problem. 
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INTRODUCATION 

 

Peristalsis is now well known to physiologists to be one of the major mechanisms for 

fluid transport in manyi biological systems. In particular, ai mechanism mayi be involved in 

swallowing food through the esophagus, in urine transport form the kidney to the bladder 
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through the urethra, in movement ofi chyme in the gastro –intestinal tract, ini the transport of 

spermatozoa in the ductus efferent of the male reproductive tracts and in the cervical canal, 

in movement of ovum in the female fallopian tubes, in the transport of lymph in the 

lymphatic vessels, and in the vasomotion of small blood vessel such as arterioles, venules 

and capillaries. In addition, vermiculation pumping occurs in many practical applications 

involving biomechanical system. Also, fingeri and roller pumps are frequentlyi used for 

pumping corrosive ori very pure materials so as to prevent direct contact of the fluid with the 

pump’s internal surfaces. A number ofi analytical [1-8], numerical and experimental [9-13] 

studies of vermiculation flows ofi different fluids have been reported. A summaryi of most of 

the investigation reported up to the year 1983, has been presented by Srivastava and 

Srivastava [14], andi some imported contribution of recent year, are reference in Srivastava 

and Saxsen [15]. Physiological organs are generallyi observed have the form ofi a non-uniform 

duct [16, 17]. In particular, the vas deferens in rhesus monkeyi is ini the form of a diverging 

tube with a ration of exit to inlet dimensions of approximatelyi fouri [18]. Hence, 

vermiculation analysis ofi a Newtonian fluid in a uniform geometry cannot be applied when 

explaining the mechanism of transport of fluid ini most bio-systems. Recently, Srivastava et 

al [19] and Srivastava and Srivastava [20] studied vermiculation transport of Newtonian and 

non-Newtoniani fluids in non-uniform geometries.Asha andi Rathod [23,24] studied the effect 

of magnetic on vermiculation motion in uniform and non-uniformi annulus. Rathod and 

Sridhar [25] showed the effect ofi couple stress fluid on vermiculation transport in a uniform 

and non- annulus porous media. With the above discussion in mind, we propose to studyi the 

Vermiculation transport of a viscous incompressible fluid (creeping flow) through the gap 

between coaxial tubes, where the outeri tube is non-uniform and has a sinusoidal wave 
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1 6(r ,u ) 6  u 2 2 ′ 

travelling down its wall and the inner one is a rigid, uniform tube and movingi with a 

constant velocity. This investigation may have application in many clinical applications such 

as the endoscopes problem. 

FORMULATION OF THE PROBLEM 
 

Consider the flow of ani incompressiblei Newtonian fluid through coaxial tubes such that the outer 

tubes is non-uniform and has a sinusoidal wave traveling down and inner one rigid, andi moving 

with a constant velocity. Thei geometry of the wall surface is 

�1′ = �1, 

(2.1)  

 
� ′ = � 

 
+ ���� (

2π 
(�′ − ��)) 

 

2 2 ఒ 

(2.2) 
 

With  
 

�2(�′) = �20��′ 
 

With �1 is the radius of the inner tube �2(�′) is the radius of the outer tube ati axial distance �′ 

fromi inlet, �20 is the radius of thei outer tube ati thei inlet, �(≪ 1) is the constant � whose 

magnitudei depends on the length of thei outeri tube, � is the amplitude, � is the wave length, � is the 

propagation velocity andi �i is the time. We choose ai cylindrical coordinate systemi (�′, �′) where the 

� − ���� lies along the centrelinei of the inner and the outeri tubes and �′i is thei distance measured 

radially. 

The equation of motion ofi the flowi in the gap between the inneri andi the outer tubes are 
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6r′   r′ 6r′ 
 

Where �′ andi �′ are the velocity components in the �′ and �′ direction respectively, � is the 

density, �′ is the pressure and � is the viscosity, � is the couple stress parameter. 

The boundry conditions are 
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It is convenienti to non-dimensionalize the variable appearing in equationi (2.1-2.6) sand introducing 

Reynolds number Re, wave number ratio �, and velocity parameter �o as follows: 
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Wherei (��������� �����) = 
b 

≤ 1 
a20 

 

The equation of motion and boundary conditions in the dimensionless form becomes 
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Where � = √ 
y

 
20 

is the couple-stress fluid parameter 

 

The boundary conditions are: 
 

� = 0 � = �0 ∇2(�, �) finite at � = �1 = �, 

(2.11a) 
 

� = 
6r2 

6y 
� = 0 ∇2(�, �) = 0, finite at � = �2 = 1 + 

ఒkz  
+ �sin [2�(� − �)], 

a20 

(2.11b) 
 

Using the long wavelength approximationi and dropping terms of order � it follows from equation 

(2.8 − 2.11) that the appropriate equation describing the flowi in the laboratory frame of reference 

are 
 

6p 
= 0

 
6r 

(2.12) 
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with dimensionless boundary condition 
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Integratingi equation and using the boundary condition one finds thei expression fori the velocity 

profile as 
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The instantaneous volume flow rate(�, �) is given by 
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The pressure  rise ∆� (�) and friction force (at the  wall)  on the outer andi the inner tubes �(0)(�) 
L L 

and �(i)(�) respectively, in a tube of lengthi �, in their non-dimensional forms, are given by 
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The limiting of equation (2.15 − 2.17) as �1tends to zero gives the forms of the axial 

velocityi and the pressure gradient for vermiculation flow in non uniform tube(without 

endoscope, � = 0 ), these are 
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Hence the pressure rise and the outer friction force, in this case respectively, take the form 
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∆
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If � = 0 in equations (2.26) and (2.27), we get expression for the pressure rise and friction 

force in ai uniform tube. The analytical interpretation of ouri analysis with otheri theories are 

difficult to makei at this stage, as the integrals in equation (2.21-2.23) and equation (2.26) 

and (2.27) are not integrable in closed form, neither fori non-uniform nori uniform geometry 

(� = 0).Thus furtheri studies of our analysis are only possible afteri numerical evaluation of 

these integrals. 
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∅2 

−  + 2∅ sin(2�(� − �)) + 
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2��� 
 

 

�20 

 
+ � sin(2�(� − �)) + ∅2���2(2�(� − �)) 

Where �̄  is the time average of the flowi over one period of the wave .This formi �(�,  �)  has 

been assumed in viewi of the fact that the constant value of �(�, �) gives ∆�L(�)always 

negative, and hence will be no pumping action. Using this form of � (�, �), we shall now 

compute the dimensionless pressure rise    ∆� (�)    the inner friction force �(i)(�) (on the 
L L 

 

inner surface) and the outeri friction force �(o)(�) (on the outeri tube) overi the tube length for 

various  value  of  the  dimensionless  time  t,  dimensionless  flow  average  �̄,  amplitude  ratio  ∅, 

radius ratio �, couple stress parameteri �, and the velocityi of the inneri tube �0. The average 

rise  in  pressure  ∆�̄  ,  outer  friction  force  �–(o)  and  the  inner  friction  force  �–(i)  are  then 
L L L 

 

evaluated byi averaging ∆� (�), �(o)(�) and �(i)(�) over one period of the wave. As integrals 
L L L 

 

in equation (2.21 − 2.23) are not integrable in closed form, they are evaluated numerically 

using digital computer. Following Srivastava [15], we use the value of the various 

parameters in equation (2.21 − 2.23) as: 

�20 
= 1.25, � = � = 8.01��, � = 

3a20
 ఒ 
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Furthermore, since most routine upper gastrointestinal endoscopes are between 8 − 11 mm in 

diameter as reported Cotton, � and Williams [22] and the radius of the small intestine is 

1.25 cm as reported ini Srivastava [20] then the radius ratio take the values 0.32, 0.38 and 
 

0.44. 
 

Figure (1) andi (4) represent the variation ofi the dimensionless pressure withi dimensionless 

time � for � = 0.4, �0 = 0, � = 0.2 and radius ratio � = 0.32, 0.38, and 0.44 in the case of 

uniform and non uniform tube respectively. The difference of the pressure fori different 

values of � becomes smalleri as the radius ratio increases, i,e as the inneri radius of the tube 

increases. It can also be seen that the effect ofi increasing the flow rate is to reduce the 

pressure rise for various values ofi � 

Fig (2) and (3) represent the variation of the dimensionless pressure rise with dimensionless 

time � for � = 0.4, �0 = 0, � = 0.2 and velocity �0 = −1, 0, 1 for non uniform and 

uniform tube respectively. The result shows that the pressure rise increases as the inneri tube 

velocityi increases, i.e. pressure rise fori the endoscope increases as the inner tube moves in 

the direction of the vermiculation waves. 
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30 
 
25 

20 

15 

Q = 0.22 

- - - -- - � = 0.32 

� = 0.44 

Fig (6) − (7) and (8) shows the inner friction force (on the inner surface) and outer friction 

forces (on the outer surface) are plotted versus dimensionless time ti for different values of 

� = 0.32, 0.38 and 0.44. It observed that as the radius ratio increases there is decrease in the 

inner friction force. It is noticed that the inneri friction force behaves similari to the outer 

friction force fori the same values of the parameter. Moreover, the outer friction force is 

greateri than the inner friction force at the same values of the parameter. 

 

PL t 
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PL t 

50 

45 
Q = 0.22 

Q = 0.66 

40 

35 

0.2 0.4 0.6 0.8 

- - - -- -V0 = 0.32 

  V0 = 0.38 

Q = 0.22 

Q = 0.0 

V0 = ..... � 1 

Fig   (1) Variation of of pressure rise over the length of a regular annulus at = 0.2 � = 0.4i, V0   

=0 and different values of � 
 
 

 

Fig (2) Variation of Pressure rise over the length of a non-regular  annulus  ati � =i 0.2 for 
differenti 

values ofi V0   ati � = 0.4 , � = 0.38 
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12.5 Q = 0.0 

10 
Q = 0.22 

7.5 

Q = 0.66 

2.5 

- - - -- - � = 0.32 

  � = 0.38 

 

Fig.(3)Variation of pressure rise over the length ofi a regular annulus at � = 0.2 , � = 0.4 , � = 
0.38 for differenti values ofi V0 

 
 

PL t 
 

 

Fig (4) Variation ofi pressure risei over the length ofi non regular at 

at � = 0.2 � = 0.4i,    V0    =0    and differenti values of � 
 

 

Reference 
 
 

1. Shapiro A.H, Jaffrin M.Y.   and.Weinberg,   S.L   “i   Vermiculation   pumping 
Long Wave at Lowi Reynolds Number” J.FluidMech., 37(1969), pp. 799-825 

2. Zien T.T. andi Ostrach S.A “ A Long Wave Approximationi to Vermiculation 
Motion”, J.Biomech,3 (1970), p.63 

3. Elshehawey L.T. and Kh.S.Mekheimer, “Viscous Newtoniani fluid in 
Vermiculation Transport of Fluids” J.Phys, D: Appl. Phys,.27 (1994), p.1163. 

4. Ramachandra   R.A   and   Usha   S.   “Vermiculation   Transport   of   Two 
Immiscible   Viscous    Fluids    in    a    Circulari    Tube”, J.Fluid   Mech.,   298 
(1995), p.271 

ISSN NO : 1869-9391

PAGE NO: 24

GIS SCIENCE JOURNAL

VOLUME 10, ISSUE 10, 2023

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



5. Kh.S.Mekheimer Elsayed, L.El. Shehawey, andi Elawi A.M. “Vermiculationi 

Motion ofi a Particle fluid Suspension ini aPlanari Channel”, Int.J. of Theor 
.Phys. (IJTP) , 37 (11) 

(1998), p. 2895. 

6. Kh.S.Mekhemier , “ Non   Lineari   Vermiculation Transport   a Porous Medium 
in an Inclined Planari Channel”, J.Porous .Media, 6(3), (2003), pp. 189-201. 

7. Kh.S.Mekhemier,    “Vermiculation     Tranport     of     a     Viscous   Newtoniani 

fluid   fluid    in    a    Regular    and   Non-Regulari    Channels”, Biorheol.,   39 
(2002), pp 755-765. 

8. Kh.S.Mekhemier,  “Non-Lineari Vermiculation Transport ofi Magneto- 
Hydrodynamic Flow in ani  Inclined PlanariChannel” AISE , 28 (2A) 
(2003)pp 183-201. 

9. Takabatake  S. and. Ayukawa  K,  “Numerical Study of two 
Dimensional Vermiculation  Flows” ,  J. Fluid Mech.,122(1982), p 439. 

10. Takabatake S. and. Ayukawa K,, “Vermiculation Pumping in Circular 
Cylindrical   Tubes   a   Numerical   Study of   FluidiTransport and its Efficiency”, 
J. FluidMech.,193 (1988). 

11. Tang   and   Shen   M   “   Non   Stationaryi   vermiculation   and   transport   of   a 
heat conducting fluid, J.of Math. Anal. AndAppl., 174 (1) (1993), p 265. 

12. Brown T.D.  andi Hung T.K “Computational andi Experimental 
Investigations of Two Dimensional Non-Lineari Vermiculation Flows”, 
J.Fluidi Mech., 83 (1977), p. 249. 

13. T.W.Latham , “ Fluid Motion in a Vermiculation Pump”, M.Sc.Thesis ,MIT, 
Cambridge MA (1966). 

14. Srivastava L.M. and Srivastava V.P. “ Vermiculation Tranporti of Blood 
Casson-II”, J. Biomech. 17(1984),p. 821-829. 

15. Srivastava V.P and Saxena M. “A Two Fluid Model ofi   Non-Newtonian 
Blood Flow Induced by Vermiculation Waves”.Rheol.Acta, 33(1994), p.111. 

16. Lee J.S. and Hungi  Y.C. “i  Flow in Non –i  Regular Small Blood 
Vessel”,Microcir. Res.,3 (1971), pp. 272-279. 

17. Wiedeman M.P, “Dimension ofi Blood Vessel from Distributing Arteryi to 
Collectingi Vein”Circ. Res., 12(1963), pp375-381. 

18. Guha S.K. .Kaur and  .Ahmed  , Mechanics of  Spermatic Fluid 

19. Srivastava L.M. and Srivastava V.P.   and.Sinha   S.K,   “   Vermiculation 
Transport of a Physiological Fluid: Parti Ii Flowi inNon- Regulari Geometry” 
Biorheol., 20i (1983), pp. 428-433. 

20. Srivastava L.M. and Srivastava V.P. “Vermiculation   Transport   ofi   a Power-
Law   Fluid:   Application   to   the   Ductus Efferentes   of   the Reproducative 
Tract” Rheo.Acta, 27 (1988), pp 428-433. 

21. Gupta   B.B.   andi    Sheshadri     V,   Vermiculation   Pumping   in   Non-Regular 

ISSN NO : 1869-9391

PAGE NO: 25

GIS SCIENCE JOURNAL

VOLUME 10, ISSUE 10, 2023

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



Tubes”, J.Biomech.9 (1976), pp. 105-109. 

22. Cotton P.B. and Williams C.B., Practical Gastrointestinal Endoscopy, 
London:Oxford Universityi Press ThirdEdition, (1990).Paperi Received 18 March 
2003,Revised 12 October 2003; Accepted 13 Januaryi 2004. 

23. Asha S K and V.P.Rathod “Vermiculation Transport of magnetic fluid in 
Regulari and Non-Regular Annulus” International journal of Mathematical 
Archive , 2(12) 2011, pp 2802-2012. 

24. Asha   S   K   and   V.P.Rathod   “Effecti   of   magnetic   field   and   ani   endoscope 
on vermiculation motion” Advance in   applied Science Research, 2(4), 2012, 
pp 102-109 

25. Rathod and   Shridhar   “Vermiculation   Transport   of   a   viscous   Newtoniani 

fluid fluid in regulari and non- regulari annulus through porous medium” 
International journal of Mathematical Archive 3(4) 2012, pp 1561-1574 

ISSN NO : 1869-9391

PAGE NO: 26

GIS SCIENCE JOURNAL

VOLUME 10, ISSUE 10, 2023

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research


