Zagreb Domination Type Invariants in Graphs

SHIVASWAMY P M DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

ABSTRACT. A set $D \subseteq V$ is a dominating set of a graph G if every vertex in V - D is adjacent to one or more vertices in D. The third Zagrb index F(G) is the sum of the cubes of the degree of each vertex in G. In this paper, these two classical concepts are combined and initiated the F-domination in graphs. Further, some upper and lower bounds are obtained for F-domination number in terms of other graph theocratical parameters. Finally, we conclude this paper by showing applications of F-domination number in QSPR-studies of alkanes.

1. INTRODUCTION

The graphs considered here are finite, undirected without loops or multiple edges. A graph with p vertices and q edges is called a (p, q) graph. Any undefined term in this paper, may be found in Harary [6]. The neighbor*hood* of a vertex u in V is the set N(u) consisting of all vertices v which are adjacent with u. The closed neighborhood is $N[u] = N(u) \cup \{u\}$. Let S be a set of vertices and let $u \in S$. A vertex v is a private neighbor of u with respect to S if $N[v] \cap S = \{u\}$. The private neighbor set of u with respect to S is the set $pn[u, S] = \{v : N[v] \cap S = \{u\}\}$. If $u \in pn[u, S]$ and u is an isolated vertex in $\langle S \rangle$, then u is called its own private neighbor. Let the vertices of degree one are called *leaves* and the vertices adjacent leaves are called support vertices. A set $S \subseteq V$ is a dominating set of G if each vertex in V - S is adjacent to some vertex in S. The *domination number* $\gamma(G)$ is the smallest cardinality of a dominating set. A dominating set is said to be minimal, if no proper subset of S is a dominating set of G. It is well known that, a maximal independent set of G is a minimal dominating set of G. An excellent treatment of the fundamentals of domination is given in the book by Haynes et al. [8]. A survey of several advanced topics in domination is given in the book edited by Haynes et al. [9]. Various types of domination have been defined and studied by several authors and more than 75 models of domination are listed in the appendix of Haynes et al. [7].

²⁰²⁰ Mathematics Subject Classification. 05C05, 05C012, 05C35, 05C69.

Key words and phrases. First Zagreb index; Dominating set; Domination number.

SHIVASWAMY PM DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

Boris Furtula and Ivan Gutman[2] have put forward a degree based topological indices viz., a forgotten topological index which is defined as

$$F(G) = \sum_{u \in V(G)} d_G(u)^3 = \sum_{uv \in E(G)} \left[d_G(u)^2 + d_G(v)^2 \right].$$

2. F-DOMINATING SET

Let G = (V, E) be a graph. A subset $D \subseteq V$ of vertex set of G is said to be F-dominating (FD) set if

(i) for every
$$v \in D$$
 there exist $u \in V - D$ such that $uv \in E(G)$.

(ii) $\sum_{v \in D} d_G(v)^3 = sum_{\{u \in V - D\}} d_G(u)^3$.

The minimum cardinality among all FD-sets of the graph G are called the F-domination number $\gamma_{fz}(G)$. Further, an FD-set D is a minimal FD-set if no proper subset of D is an FD-set. The FD-set D with minimum cardinality is called γ_{fz} -set of a graph G.

For example consider a graph $G = K_4$ depicted in Figure 1.

Figure 1: The complete graph on 4-vertices

In figure 1, it can be observed that deg(a) = deg(b) = deg(c) = deg(d) = p-1 = 4-1 = 3. Further, each vertex is a dominating set in G but it is not a F-dominating set. To fulfill the conditions of F-dominating set, we have to consider one more vertex to dominating sets. i.e each pair of vertices of G will form a F-dominating sets. Hence, the domination number of G is $\gamma(G) = 1$ and the F-domination number of G is $\gamma_{fz}(G) = 2$. Thus it can be observed that for any connected graph G, $\gamma(G) \leq \gamma_{fz}(G)$.

2.1. F-Domination Number of Standard Class of Graphs. In this section, we calculate the F-domination number of some standard class of graphs such as complete graph K_p , cycle graph C_p , Path Graph P_p etc.

Proposition 2.1. i . For Complete graph K_p where p is even integer, $\gamma_{fz}(K_p) = \frac{p}{2}$

- ii . For cycle graph C_p where p is even integer, $\gamma_{fz}(C_p) = \frac{p}{2}$
- iii . For path graph P_p where p is even integer, $\gamma_{fz}(P_p) = \frac{p}{2}$

- *Proof.* (1) Let $G = K_p$ be a complete graph of order p with $\gamma_{fz}(K_p) = \frac{p}{2}$. Suppose the order of G is odd, then let $D = \{v_1, v_2, v_3, \cdots, v_{2k+1}\}$ will be the minimum FD-set of G. Since $G = K_p$ therefore, $\delta(G) = \Delta(G) = p 1$. Further, |V D| < |D|, which is a contradiction to the definition of FD-set. Hence, order of G must be even.
 - (2) The proof follows from the same lines as in (i) due to the fact that for cycle graph C_p , $\delta(G) = \Delta(G) = 2$.
 - (3) Let G = P_p be a path of even order. Let v₁, v₂, v₃, ..., v_p be the vertices of G. Then clearly, deg(v₁) = deg(v₂) = 1 and deg(v_i) = 2 where 2 ≤ i ≤ n − 1. Therefore, to satisfy the condition of F- dominating set, the pendant vertices v₁ and v_p must belongs to D and V − D respectively and the remaining vertices must be in alternatively D and V − D. Hence the cardinality of D must be ^p/₂. Thus, γ_{fz}(P_p) = |D| = ^p/₂.

Proposition 2.2. For any k-regular graph G of even order, $\gamma_{fz}(G) = \frac{p}{2}$

Proof. Let G be a k-regular graph of order p with $V(G) = \{v_1, v_2, v_3, \dots, v_p\}$. Such that $\delta(G) = \Delta(G) = k$. Suppose $\gamma_{fz}(G) = \frac{p}{2}$ and p is odd. Let $D = \{v_1, v_2, v_3, \dots, v_i\}$ be a minimum FD-set of G. It is assumed that |D| = 2r + 1 for some positive integer r. Then clearly, |D| > |V - D| and

$$\bigg|\sum_{i=1}^{v_i} [deg(v_1^3) + deg(v_2^3) + \cdots, deg(v_i^3)]\bigg| > \bigg|\sum_{i=i+1}^p [deg(v_{i+1}^3) + deg(v_{i+2}^3) + \cdots, deg(v_i^p)]\bigg|$$

. which is a contradiction to our assumption.

Theorem 2.1. For any connected (p, q)-graph satisfying FD-set,

$$\gamma_{fz}(G) \le \frac{p}{2}$$

. Further, the upper bound is attained if and only if G has a perfect matching with equal distribution of degrees of vertices.

Proof. Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, v_3, \dots, v_p\}$ and let D be a minimum F-dominating set. Then clearly V - D is also a F-dominating set. Hence |D|+|V-D| = p. Thus $\gamma_{fz}(G) \leq \min\{|D|, |D'|\} \leq \frac{p}{2}$.

For equality of an upper bound, let us assume that $\gamma_{fz}(G) = \frac{p}{2}$ and G does not contain a perfect matching with unequal degree distribution. Then there exists a vertex $v \in V(G)$ such that $v \in D$ or $v \in V - D$ which is the unique vertex of different degree. Then according to the condition of F-dominating set, G must contain another vertex of same degree. Which is a contradiction to our assumption. Hence G must have perfect matching with equal degree distribution. \Box

Theorem 2.2. Let G be a connected graph satisfying FD-set D. If D is a minimal FD-set, then V - D is also a FD-set of G.

\$HIVASWAMY P M DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

Proof. Let D be a minimal FD-set of G. Suppose V - D is not an FD-set. Then there exists a vertex u such that u is not dominated by any vertex in V - D. Since G, a non-trivial connected graph satisfies FD-set, u is dominated by at least one vertex in $D - \{u\}$. Thus $D - \{u\}$ is a FD-set, a contradiction. Hence V - D is an FD-set of a graph G.

There are some graphs, where the F-dominating sets does not exists.

Observation 2.1. For a star graph $K_{1,p-1}$; $p \ge 4$ the *F*-dominating set does not exist.

Proof. Let G be a star graph $K_{1,p-1}$; $p \ge 4$ with central vertex v_1 . Then clearly dominating sets are $D_1 = \{v_1\}$ or $D_2 = \{v_2, v_3, v_4, \cdots, v_p\}$. Further, $deg(v_1) = p - 1$ and $deg(v_i) = 1$; $2 \le i \le p$. Therefore, we can see that $deg(v_1)^3 \ne deg(v_i)^3$; $2 \le i \le p$. Hence, the condition of the F-dominating set fails here. Further, for any combination of dominating sets results to same conclusion. Therefore, G does not contain F-dominating set.

Theorem 2.1. For any connected graph G with maximum degree $\Delta(G) \leq \frac{p}{2}$, $\gamma_{fz}(G) \leq p - \Delta(G)$.

Proof. Let G be any connected graph of order p with maximum degree $\Delta(G) \leq \frac{p}{2}$. Let v be a vertex of maximum degree $\Delta(G)$ such that $deg(v) \leq \frac{p}{2}$. Then v is adjacent to its neighborhood vertices such that $\Delta(G) = N(v)$ and $\sum_{v \in D} deg(v)^3 = \sum_{v \in V-D} deg(v)^3$. Hence V - N(v) is F-dominating set. Therefore

$$\gamma_{fz}(G) \leq |V - N(V)|$$

= $p - \Delta(G).$

Theorem 2.2. Let $G = H \circ K_1$ where H is any connected graph of even order. Then $\gamma_{fz}(G) = \frac{p}{2}$.

Proof. Consider the corona operation between the connected graph H of even order and K_1 . Let $V(H) = \{v_1, v_2, v_3, \dots, v_{\frac{p}{2}}\}$ and consider $\frac{p}{2}$ copies of K_1 . Then clearly degree of each vertex $v \in V(H)$ is $deg_G(v) = deg_H(v) + 1$ and G has $\frac{p}{2}$ pendant vertices. Let D be a minimum F-dominating set of G. Such that D contains exactly half of the vertices of H together with their pendant vertices. i.e $D = \{v_1, v_2, v_3, \dots, v_{\frac{p}{4}}\} \cup \frac{p}{4}$ - copies of pendant vertices. Since the order of G is even therefore, V - D also contains same number of vertices with same degree pattern. Hence clearly $\sum_{v \in D} deg(u)^3 =$

 $\sum_{v \in V-D} deg(v)^3$. Thus D satisfies the conditions of F-dominating set. Therefore, we have

$$\gamma_{fz}(G) = |D|$$

$$= \left| \{v_1, v_2, v_3, \cdots, v_{\frac{p}{4}}\} \cup \frac{p}{4} \right| \\ = \frac{p}{4} + \frac{p}{4} \\ = \frac{p}{2}.$$

Theorem 2.3. A dominating set D of a graph G is minimal FD-set if and only if it satisfies the following conditions,

(i) $PN(v, D) \neq \emptyset$ for every $v \in D$ (ii) $\sum_{v \in D} d_G(v)^3 = \sum_{u \in V-D} d_G(u)^3$.

Proof. Let D be a minimal FD-set. Then every vertex $v \in D$, $D - \{v\}$ not a FD-set, there exists a vertex $u \in V - (D - \{v\})$. Therefore $u \in PN(v, D)$. Hence for every vertex $v \in D$ has at least one neighbor. Thus $PN(v, D) \neq \emptyset$. Also, $\sum_{v \in D} d_G(v)^3 = \sum_{u \in V - D} d_G(u)^3$.

Conversely, suppose $PN(v, D) \neq \emptyset$ and $\sum_{v \in D} d_G(v)^3 = \sum_{u \in V-D} d_G(u)^3$. Now we have to prove that D is a minimal FD-set. Assume D is not a minimal FD-set which implies that there exists a vertex $v \in D$ such that $D - \{v\}$ a dominating set. Then v is adjacent to at least one vertex in $D - \{v\}$ and also every vertex in V - D is adjacent to at least one in $D - \{v\}$. Therefore, neither (i) nor (ii) holds, which is a contradiction.

Theorem 2.4. Let G be any connected graph having minimum FD-set D. Then G is a minimal FD-set.

Proof. Let D be any FD-set. If for each vertex $v \in D$, then there exist $\sum_{v \in D} d_G(v)^3 = \sum_{u \in V-D} d_G(u)^3$ such that $uv \in E(G)$. Hence D is a minimal FD-set. \Box

Theorem 2.3. Let G be a simple connected graph with p vertices and q edges with $\gamma_{fz}(G) = k$ for some positive integer k. Then

$$\gamma_{fz}(G) \geq \frac{2kp}{\sqrt{pM_1(G)}},$$

where $M_1(G)$ is the first Zagreb index.

Proof. Let $v_1, v_2, v_3, \dots, v_p$ be the vertices of a simple graph G. Let $a_1, a_2, a_3, \dots, a_n$ and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers. Then by Cauchy-Schrwz inequality we have

$$\left(\sum_{i=1}^{p} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{p} a_i^2\right) \cdot \left(\sum_{i=1}^{p} b_i^2\right)$$
(2.1)

by setting $a_i = deg(v_i)$ and $b_i = \gamma_{fz} = k$ we have

$$\left(\sum_{i=1}^{p} deg(v_i) \cdot \gamma_{fz}\right)^2 \leq \left(\sum_{i=1}^{p} deg(v_i)^2\right) \cdot \left(\sum_{i=1}^{p} \gamma_{fz}^2\right)$$

6 HIVASWAMY P M DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

$$k^{2} \left(\sum_{i=1}^{p} deg(v_{i}) \right)^{2} \leq M_{1}(G)(p\gamma_{fz}^{2})$$

$$p\gamma_{fz}^{2} \geq \frac{k^{2}(2p)^{2}}{M_{1}(G)}$$

$$\gamma_{fz}^{2}(G) \geq \frac{k^{2}(2p)^{2}}{pM_{1}(G)}$$

$$\gamma_{fz}(G) \geq \frac{2kp}{\sqrt{pM_{1}(G)}}$$

as asserted.

We get the similar bound by applying the following inequalities:

Lemma 2.1. Let $a_1, a_2, a_3, \dots, a_n$ and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers. Then

$$\sum_{i=1}^{n} a_{i}^{r} \geq n^{1-r} \left(\sum_{i=1}^{n} b_{i}\right)^{r}$$
(2.2)

Lemma 2.2. Let $a_1, a_2, a_3, \dots, a_n$ and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers. Then

$$\sum_{i=1}^{n} \frac{a_{i}^{r+1}}{b_{i}^{r}} \geq \frac{\left(\sum_{i=1}^{n} a_{i}\right)^{r+1}}{\left(\sum_{i=1}^{n} b_{i}\right)^{r}}$$
(2.3)

Lemma 2.3. Let $a_1, a_2, a_3, \dots, a_n$ and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers. Then

$$\left(\sum_{i=1}^{n} b_i\right)^{\alpha-1} \left(\sum_{i=1}^{n} b_i a_i^{\alpha}\right) \geq \left(\sum_{i=1}^{n} a_i b_i\right)^{\alpha}$$
(2.4)

Theorem 2.4. Let G be a simple connected graph with p vertices and q edges with $\gamma_{fz}(G) = k$ for some positive integer k. Then

$$\gamma_{fz} \leq \frac{\alpha(n)(\Delta-\delta)^2}{2p(p-1)}.$$

where $\alpha(n) = n \lfloor \frac{n}{2} \rfloor (1 - \frac{1}{n} \lfloor \frac{n}{2} \rfloor)$. where $\lfloor x \rfloor$ smallest integer less than or equal to x.

Proof. Let $v_1, v_2, v_3, \dots, v_p$ be the vertices of a simple graph G. Let $a_1, a_2, a_3, \dots, a_n$ and $b_1, b_2, b_3, \dots, b_n$ be non-negative integers for which there exist real constants a, b, A and B, so that for each $i, i = 1, 2, \dots, n, a \le a_i \le A$ and $b \le b_i \le B$. Then the following inequality is valid

$$|p\sum_{i=1}^{p}a_{i}b_{i} - \sum_{i=1}^{p}a_{i}\sum_{i=1}^{p}b_{i}| \leq \alpha(n)(A-a)(B-b)$$
 (2.5)

We choose $a_i = deg_w(v_i)$ $b_i = \gamma_{fz} = k$, $A = \Delta = B$ and $a = \delta = b$, inequality (2.5), becomes

$$p\sum_{i=1}^{p} deg(v_{i}) \cdot \gamma_{fz} - \left(\sum_{i=1}^{p} deg(v_{i}) \cdot \gamma_{fz}\right) \leq \alpha(n)(\Delta - \delta)(\Delta - \delta)$$
$$p\gamma_{fz}(2p) - \gamma_{fz}(2p) \leq \alpha(n)(\Delta - \delta)^{2}$$
$$2p\gamma_{fz}(p-1) \leq \alpha(n)(\Delta - \delta)^{2}$$
$$\gamma_{fz} \leq \frac{\alpha(n)(\Delta - \delta)^{2}}{2p(p-1)}$$

Theorem 2.5. Let G be a simple connected graph with p vertices and q edges with $\gamma_{fz}(G) = k$ for some positive integer k. Then

$$\gamma_{fz}(G) \leq \sqrt{\frac{(\delta + \Delta)(2p) - M_1(G)}{\delta \Delta}}$$

Proof. Let a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n be real numbers for which there exist real constants r and R so that for each $i, i = 1, 2, \dots, n$ holds $ra_i \leq b_i \leq Ra_i$. Then the following inequality is valid.

$$\sum_{i=1}^{p} b_i^2 + rR \sum_{i=1}^{p} a_i^2 \leq (r+R) \sum_{i=1}^{n} a_i b_i.$$
(2.6)

We choose $b_i = deg(v_i)$, $a_i = \gamma_{fz} = k$, $r = \delta$ and $R = \Delta$ in inequality (2.6), then

$$\sum_{i=1}^{p} deg(v_i)^2 + \delta\Delta \sum_{i=1}^{p} \gamma_{fz}^2 \leq (\delta + \Delta) \sum_{i=1}^{p} deg(v_i)$$

$$M_1(G) + \delta\Delta p\gamma_{fz}^2 \leq (\delta + \Delta)(2p)$$

$$\delta\Delta p\gamma_{fz}^2 \leq (\delta + \Delta)(2p) - M_1(G)$$

$$\gamma_{fz}^2(G) \leq \frac{(\delta + \Delta)(2p) - M_1(G)}{\delta\Delta}$$

$$\gamma_{fz}(G) \leq \sqrt{\frac{(\delta + \Delta)(2p) - M_1(G)}{\delta\Delta}}$$
ed. \Box

as desired.

3. Applicability of the γ_{fz} in QSPR-Analysis

In this section we examine the applicability of the γ_{fz} with the set of 67 alkanes. For this, we consider the physical properties like [boiling points(BP), molar volumes(mv)at 20°C, molar refractions (mr) at 20°C, heats of vaporization (hv) at 25°C, surface tensions(st) 20°C, melting points(mp), acentric factor(AcentFac) and DHVAP] of octane isomers. The values are compiled in Table 1.

	25.2656 25.2923 25.7243 29.9066 29.9459	115.205 25.2656 116.426 25.2923 112.074 25.7243 130.688 29.9066 131.933 29.9459 131.933 29.9459 132.744 29.9347 132.744 29.9347 130.240 29.9347 130.240 29.9347 146.540 34.5504 145.821 34.4597
2656	25.2923 25.7243 29.9066 29.9459	116.426 25.2923 112.074 25.7243 130.688 29.9066 131.933 29.9459 131.033 29.9459 131.033 29.9459 131.033 29.9459 131.033 29.9459 132.744 29.8016 132.744 29.9347 132.744 29.9347 132.740 29.8104 130.240 29.8104 146.540 34.5504 145.821 34.4597
2923	25.7243 29.9066 29.9459	112.074 25.7243 130.688 29.9066 131.933 29.9459 131.933 29.9459 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 132.744 29.9347 146.540 34.5504 145.821 34.4597
7243	29.9066 29.9459	130.688 29.9066 131.933 29.9459 131.933 29.9459 129.717 29.9347 132.744 29.9347 132.740 29.9347 132.740 29.9347 130.240 29.8104 146.540 34.5504 145.821 34.4597
9066	29.9459	131.933 29.9459 129.717 29.8016 132.744 29.9347 132.744 29.9347 132.740 29.8104 146.540 34.5504 145.821 34.4597
9459	90 0016	129.717 29.8016 132.744 29.9347 132.740 29.9347 130.240 29.8104 146.540 34.5504 147.656 34.5908 145.821 34.4597
8016	0100.62	132.744 29.9347 130.240 29.8104 146.540 34.5504 147.656 34.5908 145.821 34.4597
9347	29.9347	130.240 29.8104 146.540 34.5504 147.656 34.5908 145.821 34.4597
8104	29.8104	146.540 34.5504 147.656 34.5908 145.821 34.4597
5504	34.5504	147.656 34.5908 145.821 34.4597
5908	34.5908	145.821 34.4597
4597	34.4597	
2827	34.2827	143.517 34.2827
6166	34.6166	148.695 34.6166
3237	34.3237	144.153 34.3237
6192	34.6192	148.949 34.6192
3323	34.3323	144.530 34.3323
1922	39.1922	162.592 39.1922
2316	39.2316	163.663 39.2316
212		101 00 001 001
1001	39.1001	101.832 39.1001

8HIVASWAMY PM DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

_	15 - 2	2	15 - 2	y = 0	_	18 9	1	20	10 1	2	15 - 2	<u>// // // // // // // // // // // // // </u>	2	<u> 18 – 2</u>	1 2		18 9		28 - B	<u>ii ii</u>		St 1	ž 12		27
$mp(^{\circ}C)$		-121.18		-137.50	-91.20	-126.10		-114.96	-90.87	-112.27	-107.38	-100.70	-109.21	-53.52	-80.40	-107.64	-113.20	-114.90		-113.00	-116.00			-102.90	
st(dyne/cm)	21.51	19.60	20.99	20.05	19.73	20.63	21.64	21.52	21.99	20.67	18.77	21.56	21.14	22.92	21.88	22.34	22.34	22.81	22.81	20.80	22.34	23.30	21.30	20.83	
cp(atm)	25.74	25.6	26.6	25.8	25	27.2	27.4	27.4	28.9	28.2	25.5	29	27.6	22.74	23.6	23.7	23.06	23.98	23.98	22.8	23.79	22.7	22.7	23.7	
$\operatorname{ct}(^{\circ}C)$	292.00	279.00	293.00	282.00	279.00	290.84	298.00	295.00	305.00	294.00	271.15	303.00	295.00	322.00	315.00	318.00	318.30	318.00	318.30	302.00	315.00	306.00	307.80	306.00	22 E
hv(k.J)	39.40	37.29	38.79	37.76	37.86	37.93	39.02	38.52	37.99	36.91	35.13	37.22	37.61	46.44	44.65	44.75	44.75	44.81	44.81	42.28	43.79	42.87	43.87	42.82	
$mr(cm^3)$	38.94	39.25	38.98	39.13	39.25	39.00	38.84	38.83	38.71	38.92	39.26	38.76	38.86	43.84	43.87	43.72	43.76	43.64	43.49	43.91	43.63	43.73	43.84	43.92	
$mv(cm^3)$	160.07	164.28	160.39	163.09	164.69	160.87	158.81	158.79	157.02	159.52	165.08	157.29	158.85	178.71	179.77	177.95	178.15	176.41	175.68	180.50	176.65	179.12	179.37	180.91	8
$bp(^{\circ}C)$	118.53	10.84	115.607	109.42	109.10	111.96	117.72	115.65	118.25	109.84	99.23	114.76	113.46	150.79	143.26	144.18	142.48	143.00	141.20	132.69	140.50	133.50	136.00	135.21	20
Alkane	3-ethylhexane	2,2-dimethylhexane	2,3-dimethylhexane	2,4-dimethylhexane	2,5-dimethylhexane	3,3-dimethylhexane	3,4-dimethylhexane	3-ethyl-2-methylpentane	3-ethyl-3-methylpentane	2,2,3-trimethylpentane	2,2,4-trimethylpentane	2,3,3-trimethylpentane	2,3,4-trimethylpentane	Nonane	2-methyloctane	3-methyloctane	4-methyloctane	3-ethylheptane	4-ethylheptane	2,2-dimethylheptane	2.3-dimethylheptane	2,4-dimethylheptane	2,5-dimethylheptane	2.6- dimethylheptane	
S.No.	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	
_										*													•		-

9

S.No.	Alkane	$\mathrm{pp}(\circ C)$	$mv(cm^3)$	$mr(cm^3)$	hv(kJ)	$\operatorname{ct}(^{\circ}C)$	cp(atm)	st(dyne/cm)	(\mathcal{O}_{\circ}) dui
47	3,3- dimethylheptane	137.300	176.897	43.6870	42.66	314.00	24.19	22.01	
48	3,4- dimethylheptane	140.600	175.349	43.5473	43.84	322.70	24.77	22.80	
49	3,5- dimethylheptane	136.000	177.386	43.6379	42.98	312.30	23.59	21.77	
50	4,4- dimethylheptane	135.200	176.897	43.6022	42.66	317.80	24.18	22.01	
51	3-ethyl-2-methylhexane	138.000	175.445	43.6550	43.84	322.70	24.77	22.80	
52	4-ethyl-2-methylhexane	133.800	177.386	43.6472	42.98	330.30	25.56	21.77	
53	3-ethyl-3-methylhexane	140.600	173.077	43.2680	44.04	327.20	25.66	23.22	
54	2,2,4- trimethylhexane	126.540	179.220	43.7638	40.57	301.00	23.39	20.51	-120.00
55	2,2,5- trimethylhexane	124.084	181.346	43.9356	40.17	296.60	22.41	20.04	-105.78
56	2,3,3- trimethylhexane	137.680	173.780	43.4347	42.23	326.10	25.56	22.41	-116.80
57	2,3,4- trimethylhexane	139.000	173.498	43.4917	42.93	324.20	25.46	22.80	
58	2,3,5- trimethylhexane	131.340	177.656	43.6474	41.42	309.40	23.49	21.27	-127.80
59	3,3,4- trimethylhexane	140.460	172.055	43.3407	42.28	330.60	26.45	23.27	-101.20
60	3,3-diethylpentane	146.168	170.185	43.1134	43.36	342.80	26.94	23.75	-33.11
61	2,2-dimethyl-3-ethylpentane	133.830	174.537	43.4571	42.02	322.60	25.96	22.38	-99.20
62	2,3-dimethyl-3-ethylpentane	142.000	170.093	42.9542	42.55	338.60	26.94	23.87	
63	2,4-dimethyl-3-ethylpentane	136.730	173.804	43.4037	42.93	324.20	25.46	22.80	-122.20
64	2,2,3,3-tetramethylpentane	140.274	169.495	43.2147	41.00	334.50	27.04	23.38	-99.0
65	2,2,3,4 tetramethylpentane	133.016	173.557	43.4359	41.00	319.60	25.66	21.98	-121.09
99	2,2,4,4- tetramethylpentane	122.284	178.256	43.8747	38.10	301.60	24.58	20.37	-66.54
67	2,3,3,4- tetramethylpentane	141.551	169.928	43.2016	41.75	334.50	26.85	23.31	-102.12
						-			

\$0011VASWAMY P M DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

(1) Linear Model

$$bp = 1.214 + [\gamma_{fz}(G)]2.2 \tag{3.1}$$

$$mv = 112.6 + [\gamma_{fz}(G)]2.6 \tag{3.2}$$

$$mr = 32.1 + [\gamma_{fz}(G)]1.6 \tag{3.3}$$

$$hv = 26.8 + [\gamma_{fz}(G)]1.5 \tag{3.4}$$

$$ct = 139.8 + [\gamma_{fz}(G)]3.3$$
 (3.5)

$$cp = 36.2 - [\gamma_{fz}(G)]1.8$$
 (3.6)

$$st = 18.5 + [\gamma_{fz}(G)]1.8$$
 (3.7)

$$mp = -154.9 + [\gamma_{fz}(G)]2.2 \tag{3.8}$$

(2) Quadratic Model

$$bp = 7.5[\gamma_{fz}(G)]^2 - 0.2[\gamma_{fz}(G)] - 75.6$$
(3.9)

$$mv = 4.6[\gamma_{fz}(G)]^2 - 0.2[\gamma_{fz}(G)] + 71.2$$
 (3.10)

$$mr = 3.1[\gamma_{fz}(G)]^2 - 0.1[\gamma_{fz}(G)] + 25.1$$
(3.11)

$$hv = 4.3[\gamma_{fz}(G)]^2 - 0.5[\gamma_{fz}(G)] + 23.2$$
 (3.12)

$$ct = 10.1[\gamma_{fz}(G)]^2 - 0.0[\gamma_{fz}(G)] + 68.4$$
(3.13)

$$cp = -2.9[\gamma_{fz}(G)]^2 + 0.4[\gamma_{fz}(G)] + 51.9$$
 (3.14)

$$st = 2.3[\gamma_{fz}(G)]^2 - 0.3[\gamma_{fz}(G)] + 22.4$$
 (3.15)

$$mp = 4.6[\gamma_{fz}(G)]^2 - 0.5[\gamma_{fz}(G)] - 134.6$$
(3.16)

(3) Logarithmic Model

$$bp = -144.5 + \ln[\gamma_{fz}(G)]71.3 \tag{3.17}$$

$$mv = 44.3 + \ln[\gamma_{fz}(G)]47.1 \tag{3.18}$$

$$mr = 0.5 + \ln[\gamma_{fz}(G)] 13.6$$
 (3.19)

$$hv = 32.8 + \ln[\gamma_{fz}(G)]0.5 \tag{3.20}$$

$$ct = -46.1 + \ln[\gamma_{fz}(G)] 109.8 \tag{3.21}$$

$$cp = 54.4 - \ln[\gamma_{fz}(G)]7.9 \tag{3.22}$$

$$st = 9.2 + \ln[\gamma_{fz}(G)]4.1$$
 (3.23)

$$mp = -189.7 + \ln[\gamma_{fz}(G)]29.1 \tag{3.24}$$

Table 2: Model summary for the boiling point of alkanes and weighted $\gamma_{fz}(G)$

Equation	R^2	F	Sig
Linear	0.8	73.3	0.000
Logarithmic	0.7	98.6	0.000
Quadratic	0.71	55.7	0.000

The above Table 2 revealed that the prediction power of the $\gamma_{fz}(G)$ is good in predicting the boiling points as the correlation coefficient value r = 0.8

\$2HIVASWAMY P M DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

for linear model. i.e. our result show 80.0% of accuracy in predicting the boiling points of alkanes.

Table 3: Model su	mmary for the	critica	l press	sure of a	alkanes and $\gamma_{fz}(G)$
	Equation	R^2	F	Sig	

Equation	R^2	Г	Sig
Linear	0.79	31.6	0.000
Logarithmic	0.51	12.4	0.001
Quadratic	0.72	27.3	0.000

The above Table 3 shows that the prediction power of the $\gamma_{fz}(G)$ is good in predicting the critical pressure of alkanes as the correlation coefficient value r = 0.79 for linear model. i.e. our result show 79.0% of accuracy in predicting the critical pressure of alkanes.

Table 4: Model summary for the critical temperature of alkanes and

	$\gamma_{fz}(G)$		
Equation	R^2	F	Sig
Linear	0.059	0.83	0.456
Logarithmic	0.248	3.713	0.112
Quadratic	0.79	32.98	0.000

The above Table 4 revealed that the prediction power of the weighted first Zagreb index is good in predicting the critical temperature of alkanes as the correlation coefficient value r = 0.79 for quadratic model. i.e. our result show 79% of accuracy in predicting the critical temperature of alkanes.

Table 5: Model summary for the heats of vaporization of alkanes and α_{i} (C)

	$\gamma_{fz}(G)$		
Equation	R^2	F	Sig
Linear	0.81	59.7	0.000
Logarithmic	0.84	81.5	0.000
Quadratic	0.89	41.7	0.000

The above Table 5 shows that the prediction power of the $\gamma_{fz}(G)$ is good in predicting the heats of vaporization of alkanes as the correlation coefficient value r = 0.89 for quadratic model. i.e. our result show 89.0% of accuracy in predicting the heats of vaporization of alkanes.

Table 6: Model summary for the melting point of alkanes and $\gamma_{fz}(G)$

Equation	R^2	F	Sig
Linear	0.71	12.3	0.001
Logarithmic	0.513	11.4	0.000
Quadratic	0.564	6.8	0.003

The above Table 6 shows that the prediction power of the $\gamma_{fz}(G)$ is not so good in predicting the melting point of alkanes as the correlation coefficient values for all models are less than 0.7.

Table 7: Model summary for the molar refraction of alkanes and $\gamma_{fz}(G)$

Equation	R^2	F	Sig
Linear	0.45	10.2	0.004
Logarithmic	0.46	11.3	0.001
Quadratic	0.53	7.2	0.003

The above Table 7 shows that the prediction power of the $\gamma_{fz}(G)$ is not so good in predicting the molar refraction of alkanes as the correlation coefficient value for all models is less than 0.7.

Table 8: Model summary for the molar volume of alkanes and $\gamma_{fz}(G)$

Equation	R^2	F	Sig
Linear	0.78	39.9	0.000
Logarithmic	0.51	11.4	0.001
Quadratic	0.82	29.3	0.000

The above Table 8 revealed that the prediction power of the $\gamma_{fz}(G)$ is good in predicting molar volume of alkanes as the correlation coefficient value r = 0.82 for quadratic model. i.e. our result show 82.0% of accuracy in predicting the molar volume of alkanes.

Table 9: Model summary for the surface tension of alkanes and $\gamma_{fz}(G)$

Equation	R^2	F	Sig
Linear	0.08	0.70	0.35
Logarithmic	0.16	2.4	0.1
Quadratic	0.81	29.7	0.000

The above Table 9 shows that the prediction power of the $\gamma_{fz}(G)$ is good in predicting the surface tension of alkanes as the correlation coefficient value r = 0.81 for quadratic model. i.e. our result show 81.0% of accuracy in predicting the quadratic model of alkanes.

REFERENCES

- J. B. Diaz, F. T. Metcalf, Stronger forms of a class of inequalities of G. PólyaG.Szegö and L. V. Kantorovich, Bull. Amer. Math. Soc. 69 (1963) 415418.
- [2] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 11841190.
- [3] I. Gutman, Degree–based topological indices, Croat. Chem. Acta., 86 (2013), 351–361.
- [4] I. Gutman, K. C. Das, The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92.
- [5] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
- [6] F. Harary, Graph Theory, Addison-Wesley, Reading Mass (1969).

\$HIVASWAMY PM DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

- [7] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning (eds.,), Topics in Domination in Graphs. Springer International Publishing AG, 2020.
- [8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York (1998).
- [9] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in graphs (Advanced Topics), Marcel Dekker, New York (1998).
- [10] S. M. Hosamani and I. Gutman, Zagreb indices of transformation graphs and total transformation graphs, Appl. Math. Comput. 247 (2014) 1156-1160.
- [11] S. M. Hosamani, B. Basavanagoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 74(1) (2015) 97–101.
- [12] I. Ž. Milovanovć, E. I. Milovanovć, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72(2014)179–182.
- [13] Mitrnović D. S., Pečarić J. E, Fink A. M., Classical and new inequalities in analysis, Springer, Dordrecht (1993).
- [14] Mitrnović D. S, Vasić P. M, Analytical inequalities, Springer-Berlin, (1970).
- [15] V. Nikiforov, G. Pasten, O. Rojo and R. L. Soto, On the A_{α} -spectra of trees, Linear Algebra Appl. 520 (2017) 286305.
- [16] N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba Univ. 5(1968), 199203, in Japanese.
- [17] D. Plavsić, S. Nikolić, N. Trinajstić, On the Harary index for the characterization of chemical graphs, J. Math. Chem 12(1993) 235–250.
- [18] G. Polya, G. Szego, Problems and Theorems in analysis, Series, Integral Calculus, Theory of Functions, Springer, Berlin, 1972. *Email address*: shivaswamy.pm@gmail.com