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ABSTRACT. A set D ⊆ V is a dominating set of a graph G if every

vertex in V − D is adjacent to one or more vertices in D. The third

Zagrb index F (G) is the sum of the cubes of the degree of each vertex in

G. In this paper, these two classical concepts are combined and initiated

the F -domination in graphs. Further, some upper and lower bounds are

obtained for F−domination number in terms of other graph theocratical

parameters. Finally, we conclude this paper by showing applications of

F -domination number in QSPR-studies of alkanes.

1. INTRODUCTION

The graphs considered here are finite, undirected without loops or multi-

ple edges. A graph with p vertices and q edges is called a (p, q) graph. Any

undefined term in this paper, may be found in Harary [6]. The neighbor-

hood of a vertex u in V is the set N(u) consisting of all vertices v which are

adjacent with u. The closed neighborhood is N [u] = N(u) ∪ {u}. Let S

be a set of vertices and let u ∈ S. A vertex v is a private neighbor of u with

respect to S if N [v] ∩ S = {u}. The private neighbor set of u with respect

to S is the set pn[u, S] = {v : N [v] ∩ S = {u}}. If u ∈ pn[u, S] and u

is an isolated vertex in 〈S〉, then u is called its own private neighbor. Let

the vertices of degree one are called leaves and the vertices adjacent leaves

are called support vertices. A set S ⊆ V is a dominating set of G if each

vertex in V − S is adjacent to some vertex in S. The domination number

γ(G) is the smallest cardinality of a dominating set. A dominating set is

said to be minimal, if no proper subset of S is a dominating set of G. It is

well known that, a maximal independent set of G is a minimal dominating

set of G. An excellent treatment of the fundamentals of domination is given

in the book by Haynes et al. [8]. A survey of several advanced topics in

domination is given in the book edited by Haynes et al. [9]. Various types

of domination have been defined and studied by several authors and more

than 75 models of domination are listed in the appendix of Haynes et al. [7].
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Boris Furtula and Ivan Gutman[2] have put forward a degree based topo-

logical indices viz., a forgotten topological index which is defined as

F (G) =
∑

u∈V (G)

dG(u)
3 =

∑

uv∈E(G)

[

dG(u)
2 + dG(v)

2
]

.

2. F-DOMINATING SET

Let G = (V,E) be a graph. A subset D ⊆ V of vertex set of G is said to

be F-dominating (FD) set if

(i) for every v ∈ D there exist u ∈ V −D such that uv ∈ E(G).
(ii)

∑

v∈D dG(v)
3 = sum{u ∈ V −D}dG(u)

3.

The minimum cardinality among all FD-sets of the graph G are called the

F-domination number γfz(G). Further, an FD-set D is a minimal FD-set if

no proper subset of D is an FD-set. The FD-set D with minimum cardinal-

ity is called γfz-set of a graph G.

For example consider a graph G = K4 depicted in Figure 1.

b b

bb

a b

c d

G:

Figure 1: The complete graph on 4-vertices

In figure 1, it can be observed that deg(a) = deg(b) = deg(c) = deg(d) =
p−1 = 4−1 = 3. Further, each vertex is a dominating set in G but it is not

a F - dominating set. To fulfill the conditions of F−dominating set, we have

to consider one more vertex to dominating sets. i.e each pair of vertices of

G will form a F−dominating sets. Hence, the domination number of G is

γ(G) = 1 and the F−domination number of G is γfz(G) = 2. Thus it can

be observed that for any connected graph G, γ(G) ≤ γfz(G).

2.1. F-Domination Number of Standard Class of Graphs. In this sec-

tion, we calculate the F−domination number of some standard class of

graphs such as complete graph Kp, cycle graph Cp, Path Graph Pp etc.

Proposition 2.1. i . For Complete graph Kp where p is even integer,

γfz(Kp) =
p

2

ii . For cycle graph Cp where p is even integer, γfz(Cp) =
p

2

iii . For path graph Pp where p is even integer, γfz(Pp) =
p

2
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Proof. (1) Let G = Kp be a complete graph of order p with γfz(Kp) =
p

2
. Suppose the order of G is odd, then letD = {v1, v2, v3, · · · , v2k+1}

will be the minimum FD-set of G. Since G = Kp therefore, δ(G) =
∆(G) = p− 1. Further, |V −D| < |D|, which is a contradiction to

the definition of FD−set. Hence, order of G must be even.

(2) The proof follows from the same lines as in (i) due to the fact that

for cycle graph Cp, δ(G) = ∆(G) = 2.

(3) Let G = Pp be a path of even order. Let v1, v2, v3, · · · , vp be the

vertices of G. Then clearly, deg(v1) = deg(v2) = 1 and deg(vi) =
2 where 2 ≤ i ≤ n − 1. Therefore, to satisfy the condition of

F - dominating set, the pendant vertices v1 and vp must belongs to

D and V − D respectively and the remaining vertices must be in

alternatively D and V −D. Hence the cardinality of D must be p

2
.

Thus, γfz(Pp) = |D| = p

2
.

�

Proposition 2.2. For any k-regular graph G of even order, γfz(G) = p

2

Proof. Let G be a k−regular graph of order p with V (G) = {v1, v2, v3, · · · , vp}.

Such that δ(G) = ∆(G) = k. Suppose γfz(G) = p

2
and p is odd. Let

D = {v1, v2, v3, · · · , vi} be a minimum FD−set of G. It is assumed that

|D| = 2r + 1 for some positive integer r. Then clearly, |D| > |V −D| and
∣

∣

∣

∣

vi
∑

i=1

[deg(v31)+deg(v32)+· · · , deg(v3i )]

∣

∣

∣

∣

>

∣

∣

∣

∣

p
∑

i=i+1

[deg(v3i+1)+deg(v3i+2)+· · · , deg(vpi )]

∣

∣

∣

∣

. which is a contradiction to our assumption. �

Theorem 2.1. For any connected (p, q)-graph satisfying FD-set,

γfz(G) ≤
p

2
. Further, the upper bound is attained if and only if G has a perfect matching

with equal distribution of degrees of vertices.

Proof. Let G be a connected graph with vertex set V (G) = {v1, v2, v3, · · · , vp}
and let D be a minimum F-dominating set. Then clearly V − D is also a

F−dominating set. Hence |D|+|V−D| = p. Thus γfz(G) ≤ min{|D|, |D
′

|} ≤
p

2
.

For equality of an upper bound, let us assume that γfz(G) = p

2
and G

does not contain a perfect matching with unequal degree distribution. Then

there exists a vertex v ∈ V (G) such that v ∈ D or v ∈ V − D which is

the unique vertex of different degree. Then according to the condition of

F−dominating set, G must contain another vertex of same degree. Which

is a contradiction to our assumption. Hence G must have perfect matching

with equal degree distribution. �

Theorem 2.2. Let G be a connected graph satisfying FD-set D. If D is a

minimal FD-set, then V −D is also a FD-set of G.
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Proof. Let D be a minimal FD-set of G. Suppose V − D is not an FD-

set. Then there exists a vertex u such that u is not dominated by any vertex

in V − D. Since G, a non-trivial connected graph satisfies FD-set, u is

dominated by at least one vertex in D − {u}. Thus D − {u} is a FD-set, a

contradiction. Hence V −D is an FD-set of a graph G. �

There are some graphs, where the F−dominating sets does not exists.

Observation 2.1. For a star graph K1,p−1; p ≥ 4 the F−dominating set

does not exist.

Proof. Let G be a star graph K1,p−1;p ≥ 4 with central vertex v1. Then

clearly dominating sets are D1 = {v1} or D2 = {v2, v3, v4, · · · , vp}. Fur-

ther, deg(v1) = p − 1 and deg(vi) = 1; 2 ≤ i ≤ p. Therefore, we

can see that deg(v1)
3 6= deg(vi)

3;2 ≤ i ≤ p. Hence, the condition of

the F−dominating set fails here. Further, for any combination of dom-

inating sets results to same conclusion. Therefore, G does not contain

F−dominating set. �

Theorem 2.1. For any connected graph G with maximum degree ∆(G) ≤
p

2
, γfz(G) ≤ p−∆(G).

Proof. Let G be any connected graph of order p with maximum degree

∆(G) ≤ p

2
. Let v be a vertex of maximum degree ∆(G) such that deg(v) ≤

p

2
. Then v is adjacent to its neighborhood vertices such that ∆(G) = N(v)

and
∑

v∈D

deg(v)3 =
∑

v∈V −D

deg(v)3. Hence V − N(v) is F -dominating set.

Therefore

γfz(G) ≤ |V −N(V )|

= p−∆(G).

�

Theorem 2.2. Let G = H ◦ K1 where H is any connected graph of even

order. Then γfz(G) = p

2
.

Proof. Consider the corona operation between the connected graph H of

even order and K1. Let V (H) = {v1, v2, v3, · · · , v p

2

} and consider p

2
copies

of K1. Then clearly degree of each vertex v ∈ V (H) is deg
G
(v) = deg

H
(v)+

1 and G has p

2
pendant vertices. Let D be a minimum F−dominating set

of G. Such that D contains exactly half of the vertices of H together with

their pendant vertices. i.e D = {v1, v2, v3, · · · , v p

4

} ∪ p

4
- copies of pendant

vertices. Since the order of G is even therefore, V −D also contains same

number of vertices with same degree pattern. Hence clearly
∑

u∈D

deg(u)3 =
∑

v∈V−D

deg(v)3. ThusD satisfies the conditions of F−dominating set. There-

fore, we have

γfz(G) = |D|
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=

∣

∣

∣

∣

{v1, v2, v3, · · · , v p

4

} ∪
p

4

∣

∣

∣

∣

=
p

4
+

p

4

=
p

2
.

�

Theorem 2.3. A dominating set D of a graph G is minimal FD-set if and

only if it satisfies the following conditions,

(i) PN(v,D) 6= ∅ for every v ∈ D

(ii)
∑

v∈D dG(v)
3 =

∑

u∈V−D dG(u)
3.

Proof. Let D be a minimal FD-set. Then every vertex v ∈ D, D−{v} not a

FD-set, there exists a vertex u ∈ V − (D−{v}). Therefore u ∈ PN(v,D).
Hence for every vertex v ∈ D has at least one neighbor. Thus PN(v,D) 6=
∅. Also,

∑

v∈D dG(v)
3 =

∑

u∈V−D dG(u)
3.

Conversely, supposePN(v,D) 6= ∅ and
∑

v∈D dG(v)
3 =

∑

u∈V−D dG(u)
3.

Now we have to prove that D is a minimal FD-set. Assume D is not a mini-

mal FD-set which implies that there exists a vertex v ∈ D such that D−{v}
a dominating set. Then v is adjacent to at least one vertex in D − {v} and

also every vertex in V −D is adjacent to at least one in D−{v}. Therefore,

neither (i) nor (ii) holds, which is a contradiction. �

Theorem 2.4. Let G be any connected graph having minimum FD-set D.

Then G is a minimal FD-set.

Proof. Let D be any FD-set. If for each vertex v ∈ D, then there exist
∑

v∈D dG(v)
3 =

∑

u∈V−D dG(u)
3 such that uv ∈ E(G). Hence D is a

minimal FD-set. �

Theorem 2.3. Let G be a simple connected graph with p vertices and q

edges with γfz(G) = k for some positive integer k . Then

γfz(G) ≥
2kp

√

pM1(G)
,

where M1(G) is the first Zagreb index.

Proof. Let v1, v2, v3, · · · , vp be the vertices of a simple graph G. Let a1, a2, a3, · · · , an
and b1, b2, b3, · · · , bn be non-negative integers. Then by Cauchy-Schrwz in-

equality we have
( p
∑

i=1

aibi

)2

≤

( p
∑

i=1

a2i

)

·

( p
∑

i=1

b2i

)

(2.1)

by setting ai = deg(vi) and bi = γfz = k we have
( p
∑

i=1

deg(vi) · γfz

)2

≤

( p
∑

i=1

deg(vi)
2

)

·

( p
∑

i=1

γ2
fz

)
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k2

( p
∑

i=1

deg(vi)

)2

≤ M1(G)(pγ2
fz)

pγ2
fz ≥

k2(2p)2

M1(G)

γ2
fz(G) ≥

k2(2p)2

pM1(G)

γfz(G) ≥
2kp

√

pM1(G)

as asserted. �

We get the similar bound by applying the following inequalities:

Lemma 2.1. Let a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn be non-negative

integers. Then
n

∑

i=1

ari ≥ n1−r

( n
∑

i=1

bi

)r

(2.2)

Lemma 2.2. Let a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn be non-negative

integers. Then

n
∑

i=1

ar+1
i

bri
≥

(

n
∑

i=1

ai

)r+1

(

n
∑

i=1

bi

)r (2.3)

Lemma 2.3. Let a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn be non-negative

integers. Then
( n
∑

i=1

bi

)α−1( n
∑

i=1

bia
α
i

)

≥

( n
∑

i=1

aibi

)α

(2.4)

Theorem 2.4. Let G be a simple connected graph with p vertices and q

edges with γfz(G) = k for some positive integer k . Then

γfz ≤
α(n)(∆− δ)2

2p(p− 1)
.

where α(n) = n⌊n
2
⌋(1 − 1

n
⌊n
2
⌋). where ⌊x⌋ smallest integer less than or

equal to x.

Proof. Let v1, v2, v3, · · · , vp be the vertices of a simple graph G. Let a1, a2, a3, · · · , an
and b1, b2, b3, · · · , bn be non-negative integers for which there exist real con-

stants a, b, A and B, so that for each i, i = 1, 2, · · · , n, a ≤ ai ≤ A and

b ≤ bi ≤ B. Then the following inequality is valid

| p

p
∑

i=1

aibi −

p
∑

i=1

ai

p
∑

i=1

bi | ≤ α(n)(A− a)(B − b) (2.5)
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We choose ai = degw(vi) bi = γfz = k, A = ∆ = B and a = δ = b,

inequality (2.5), becomes

p

p
∑

i=1

deg(vi) · γfz −

( p
∑

i=1

deg(vi) · γfz

)

≤ α(n)(∆− δ)(∆− δ)

pγfz(2p)− γfz(2p) ≤ α(n)(∆− δ)2

2pγfz(p− 1) ≤ α(n)(∆− δ)2

γfz ≤
α(n)(∆− δ)2

2p(p− 1)

�

Theorem 2.5. Let G be a simple connected graph with p vertices and q

edges with γfz(G) = k for some positive integer k. Then

γfz(G) ≤

√

(δ +∆)(2p)−M1(G)

δ∆
.

Proof. Let a1, a2, · · · , an and b1, b2, · · · , bn be real numbers for which there

exist real constants r and R so that for each i, i = 1, 2, · · · , n holds rai ≤
bi ≤ Rai. Then the following inequality is valid.

p
∑

i=1

b2i + rR

p
∑

i=1

a2i ≤ (r +R)
n

∑

i=1

aibi. (2.6)

We choose bi = deg(vi), ai = γfz = k, r = δ and R = ∆ in inequality

(2.6), then
p

∑

i=1

deg(vi)
2 + δ∆

p
∑

i=1

γ2
fz ≤ (δ +∆)

p
∑

i=1

deg(vi)

M1(G) + δ∆pγ2
fz ≤ (δ +∆)(2p)

δ∆pγ2
fz ≤ (δ +∆)(2p)−M1(G)

γ2
fz(G) ≤

(δ +∆)(2p)−M1(G)

δ∆

γfz(G) ≤

√

(δ +∆)(2p)−M1(G)

δ∆

as desired. �

3. APPLICABILITY OF THE γfz IN QSPR-ANALYSIS

In this section we examine the applicability of the γfz with the set of 67

alkanes. For this, we consider the physical properties like [boiling points(BP),

molar volumes(mv)at 20◦C, molar refractions (mr) at 20◦C, heats of vapor-

ization (hv) at 25◦C, surface tensions(st) 20◦C, melting points(mp), acentric

factor(AcentFac) and DHVAP] of octane isomers. The values are compiled

in Table 1.

ISSN NO : 1869-9391

PAGE NO: 63

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 3, 2020

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



8SHIVASWAMY P M DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

ISSN NO : 1869-9391

PAGE NO: 64

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 3, 2020

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



9

ISSN NO : 1869-9391

PAGE NO: 65

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 3, 2020

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



10SHIVASWAMY P M DEPARTMENT OF MATHEMATICS, BMSCE, BENGALURU 560019, KARNATAKA, INDIA

ISSN NO : 1869-9391

PAGE NO: 66

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 3, 2020

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



11

(1) Linear Model

bp = 1.214 + [γfz(G)]2.2 (3.1)

mv = 112.6 + [γfz(G)]2.6 (3.2)

mr = 32.1 + [γfz(G)]1.6 (3.3)

hv = 26.8 + [γfz(G)]1.5 (3.4)

ct = 139.8 + [γfz(G)]3.3 (3.5)

cp = 36.2− [γfz(G)]1.8 (3.6)

st = 18.5 + [γfz(G)]1.8 (3.7)

mp = −154.9 + [γfz(G)]2.2 (3.8)

(2) Quadratic Model

bp = 7.5[γfz(G)]2 − 0.2[γfz(G)]− 75.6 (3.9)

mv = 4.6[γfz(G)]2 − 0.2[γfz(G)] + 71.2 (3.10)

mr = 3.1[γfz(G)]2 − 0.1[γfz(G)] + 25.1 (3.11)

hv = 4.3[γfz(G)]2 − 0.5[γfz(G)] + 23.2 (3.12)

ct = 10.1[γfz(G)]2 − 0.0[γfz(G)] + 68.4 (3.13)

cp = −2.9[γfz(G)]2 + 0.4[γfz(G)] + 51.9 (3.14)

st = 2.3[γfz(G)]2 − 0.3[γfz(G)] + 22.4 (3.15)

mp = 4.6[γfz(G)]2 − 0.5[γfz(G)]− 134.6 (3.16)

(3) Logarithmic Model

bp = −144.5 + ln[γfz(G)]71.3 (3.17)

mv = 44.3 + ln[γfz(G)]47.1 (3.18)

mr = 0.5 + ln[γfz(G)]13.6 (3.19)

hv = 32.8 + ln[γfz(G)]0.5 (3.20)

ct = −46.1 + ln[γfz(G)]109.8 (3.21)

cp = 54.4− ln[γfz(G)]7.9 (3.22)

st = 9.2 + ln[γfz(G)]4.1 (3.23)

mp = −189.7 + ln[γfz(G)]29.1 (3.24)

Table 2: Model summary for the boiling point of alkanes and weighted

γfz(G)

Equation R2 F Sig

Linear 0.8 73.3 0.000

Logarithmic 0.7 98.6 0.000

Quadratic 0.71 55.7 0.000

The above Table 2 revealed that the prediction power of the γfz(G) is good

in predicting the boiling points as the correlation coefficient value r = 0.8
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for linear model. i.e. our result show 80.0% of accuracy in predicting the

boiling points of alkanes.

Table 3: Model summary for the critical pressure of alkanes and γfz(G)

Equation R2 F Sig

Linear 0.79 31.6 0.000

Logarithmic 0.51 12.4 0.001

Quadratic 0.72 27.3 0.000

The above Table 3 shows that the prediction power of the γfz(G) is good

in predicting the critical pressure of alkanes as the correlation coefficient

value r = 0.79 for linear model. i.e. our result show 79.0% of accuracy in

predicting the critical pressure of alkanes.

Table 4: Model summary for the critical temperature of alkanes and

γfz(G)

Equation R2 F Sig

Linear 0.059 0.83 0.456

Logarithmic 0.248 3.713 0.112

Quadratic 0.79 32.98 0.000

The above Table 4 revealed that the prediction power of the weighted first

Zagreb index is good in predicting the critical temperature of alkanes as the

correlation coefficient value r = 0.79 for quadratic model. i.e. our result

show 79% of accuracy in predicting the critical temperature of alkanes.

Table 5: Model summary for the heats of vaporization of alkanes and

γfz(G)

Equation R2 F Sig

Linear 0.81 59.7 0.000

Logarithmic 0.84 81.5 0.000

Quadratic 0.89 41.7 0.000

The above Table 5 shows that the prediction power of the γfz(G) is good in

predicting the heats of vaporization of alkanes as the correlation coefficient

value r = 0.89 for quadratic model. i.e. our result show 89.0% of accuracy

in predicting the heats of vaporization of alkanes.

Table 6: Model summary for the melting point of alkanes and γfz(G)

Equation R2 F Sig

Linear 0.71 12.3 0.001

Logarithmic 0.513 11.4 0.000

Quadratic 0.564 6.8 0.003

The above Table 6 shows that the prediction power of the γfz(G) is not so

good in predicting the melting point of alkanes as the correlation coefficient

values for all models are less than 0.7.
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Table 7: Model summary for the molar refraction of alkanes and γfz(G)

Equation R2 F Sig

Linear 0.45 10.2 0.004

Logarithmic 0.46 11.3 0.001

Quadratic 0.53 7.2 0.003

The above Table 7 shows that the prediction power of the γfz(G) is not so

good in predicting the molar refraction of alkanes as the correlation coeffi-

cient value for all models is less than 0.7.

Table 8: Model summary for the molar volume of alkanes and γfz(G)

Equation R2 F Sig

Linear 0.78 39.9 0.000

Logarithmic 0.51 11.4 0.001

Quadratic 0.82 29.3 0.000

The above Table 8 revealed that the prediction power of the γfz(G) is good

in predicting molar volume of alkanes as the correlation coefficient value

r = 0.82 for quadratic model. i.e. our result show 82.0% of accuracy in

predicting the molar volume of alkanes.

Table 9: Model summary for the surface tension of alkanes and γfz(G)

Equation R2 F Sig

Linear 0.08 0.70 0.35

Logarithmic 0.16 2.4 0.1

Quadratic 0.81 29.7 0.000

The above Table 9 shows that the prediction power of the γfz(G) is good in

predicting the surface tension of alkanes as the correlation coefficient value

r = 0.81 for quadratic model. i.e. our result show 81.0% of accuracy in

predicting the quadratic model of alkanes.
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energy, MATCH Commun. Math. Comput. Chem. 72(2014)179–182.
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