Studies On Interaction Of Dye- Surfactant Binary Complex Of Pyrocatechol Violet and Sodium Lauryl Sulphate

* Dr. Mrs. Suparna Deshmukh

Dept. Of Chemistry S.K.Gandhi College, Kada, Dist. Beed Corresponding Author: Dr. Mrs. Suparna Deshmukh

Abstract:

Surfactants enhances complexation of triphenylmethane dyes by formation of a new dye : surfactant complex which is as an intermediate stable complex. Addition of quaternary salts of surfactants to the deeply colored solution of dyes causes a marked change in its λ max. The absorption spectra of Pyrocatechol Voilet, PCV; a triphenylmethane dye, has been studied in the presence as well as in the absence of anionic surfactant Sodium Lauryl Sulphate . At different pH values ranging from pH 1.00 to 12.00, the spectra is studied. Hypsochromic shift is observed in the absorption spectra in the presence of surfactant. Dissociation constant has been evaluated both in the presence and absence of surfactant. Decrease in the values of dissociation constant, pK values in the presence of surfactant is observed which indicated formation of water soluble, stable, dye-surfactant complex. Composition of stable dye-surfactant complex is determined and effect of foreign ions such as Chlorides i.e NaCl, KCl, NH₄Cl; the nitrates i.e KNO₃, NaNO₃, NH₄NO₃;and sulphates

i.e K_2SO_4 , Na_2SO_4 and $(NH_4)_2SO_4$ has been studied in detail. It is found out that the Binary submicellar aggregates can be proposed as the active species in ternary complex formation with metal ions and hence can be termed as modified reagents, as PCV-SLS.

KeyWords: Triphenylmethane Dye, Surfactant, Modified reagent, Hypsochromic Shift

I. Introduction

Some reactions were reported by Ramanuskas etal(1) which showed decrease in the color intensity of organic dyes on the addition of surfactants. These newly formed dye-surfactant species are termed as modified reagents which are suitable for the sensitization of the color reactions even with metal ions. The addition of quaternary salts to the deeply colored solution of dyes, causes a marked color change with the change in wavelength of maximum absorption. The hypsochromic shift is caused by short range electrostatic forces on the surface of the micelle double layer. The purpose of addition of surfactants to the dyes is thus to decolorize them. It is followed by Sign Rule (2,) which is an empirical statement. The interesting property of the aggregates formed is their ability to form colored complexes with various cations. Another advantage is that the determination of microamounts of metal ions can be done with much higher sensitivity in the presence of these long chain quaternary salts. Composition of dye-surfactant complex is determined by adding varying concentration of surfactants to the dye solutions. Higher concentration of mineral salts (3) prevents the micelle formation due to occurrence of inorganic anions which displace dye as counter ions. Hence effect of mineral salts has been studied.

This unusual property has applied for microdetermination of Transition metal ions and even rare earths in several studies. With this aim present studies has been undertaken and involves a detail study of the interaction of surfactant, an anionic surfactant, sodium lauryl sulfate, SLS; with a Triphenylmethane Dye, Pyrocatechol Violet.

Experimental

Instruments : The absorption measurements were done on a UV Shimadzu spectrophotometer UV-240. Glass cuvettes of 1cm thickness supplied with the instrument were used; distilled water blanks were used. For pH measurements, Elico pH meter LI-10 operated on 220volts stabilized AC mains were used, with a glass calomel electrode system.

Materials: All the reagents used were of BDH, Anal R grade purity. The anionic surfactant, Sodium Lauryl Sulfate, SLS, in 20% aq. methanol. The Dye solution was prepared in double distilled water by dissolving their purified samples and the standard solutions of metal solutions were prepared from different salts.

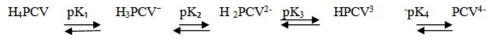
Procedure: Preparation of mixtures, measurements of absorbance, adjustment of pH etc. were carried out at room temperature. In all the experiments, Sodium Lauryl Sulfate solution was added to the reagent solutions which was_kept_atleast 20min for maximum decolorizing effect. The absorbance readings were recorded only after 30 minutes of the addition of the reactants, a time necessary for equilibration.

Results And Discussion

TARLE-1

Absorption Spectra

Absorption spectra of PCV solution was recorded from pH1.0 to 12.0. The spectral studies in the presence of ten times excess of SLS were also recorded from pH1.0 to 12.0. The λ max values in the absence as well as in the presence of SLS are summarized below.


λ max OF PCV AT DIFFERENT pH VALUES					
pН	λ max nm in absence of SLS	λ max nm in presence of SLS			
1.0 - 2.0	440	440			
3.0	440	440			
4.0	440	440			
5.0	440	430			
6.0	440	420			
9.0-11.0	470	490			
12.0	500	No Sharp Peak obtained			

111	
max OF PCV	AT DIFFERENT pH VALUES

Hypsochromic shift is observed at pH 6.0. Hence pH of study for using PCV and SLS is 6.0.

Dissociation Constant (pK values) of PCV

The PCV contains four replaceable protons in its molecule. The following equilibrium reaction which occurs in the stepwise dissociation of PCV can be written as follows.

The above equilibrium reaction shows three pK values of PCV. Experiments were carried out for the determination of pK values of PCV in the presence and absence of surfactant SLS. From the results, pK values obtained are recorded in Table 2.

Several sets of solutions of suitable concentrations of dyes were prepared & pH was adjusted from 1.0 to 12.0. Spectra of these solutions were recorded from 380nm to 700nm. From the spectra , a graph was then plotted between absorbance and pH values at different λ maxs obtained from spectra. The S- shaped curves are obtained where the lower part of it represents the molecular species and the upper portion represents the ionic species. From these pK values were determined both in absence as well as in the presence of SLS using equation given below. The color changes corresponding to a shift of pH values towards acidic and alkaline ranges was studied. This has been related to an early dissociation of protons of triphenylmethane dyes in the presence of surfactants showing a decrease in the value of their constants. The lowering of pK values in presence of SLS indicates their action on PCV. The pK values were determined on the basis of eq. I or eqn. II. If the absorbance of the ionized species is greater than the absorbance of the molecular species, equation II is used.

 $pK = pH + log [(A_I - A)] / [(A - A_M)]..... equation(I)$

 $pK = pH + \log [(A - A_I)] / [(A_M - A)]$equation (II)

The terms in equations are

 A_M = Absorbance of molecular species,

A_I = Absorbance of ionic species, and

A = Half point absorbance

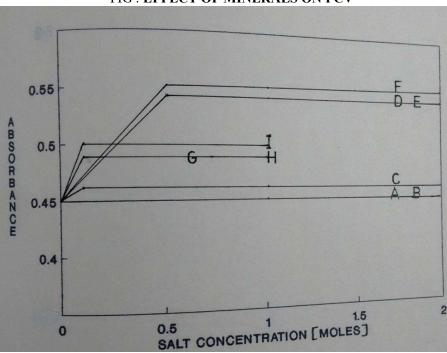
Dissociation Constants of PCV						
pK values	In absence of surfactant	In presence of SLS				
pK1	5.40	3.26				
pK2	6.30	4.79				
pK3	8.32	5.22				
pK4	11.02	9.87				

TABI	LE - 2	
Viccosistion	Constants	of 1

Lowering of pK values indicates the action of surfactants on PCV.

Composition Of PCV- SLS Complex :

The effect of varying concentration of SLS on PCV absorbance was also studied at pH 6.0 and at 420nm. The absorbance of PCV decreases linearly upto a definite ratio of PCV:SLS, as 1:1, is reached. After this point the addition of surfactant, even in excess amount did not alter the absorbance of PCV to any significant extent. Thus the complex formed can be represented as [PCV : SLS]. It is represented in fig.


The concentration of the solution of PCV for studies is taken as follows : CURVE A : 3.2 X 10^{-5} M CURVE B : 2.40 X 10^{-5} M CURVE C : 1.60 X 10^{-5} M

The descending section of the curve represents the successive effect of SLS on Pyro Catechol Violet upto the point at which the additional increase of CTAB, concentration does not further diminish the absorbance of Pyrocatechol Violet. Thus, it may be concluded from the curves that this point and hence the maximum decolorizing effect is reached at the minimal ratio of PCV to SLS as 1:1. After this point the further addition of increased concentration of CTAB to SLS, does not alter the absorbance of PCV. Thus, at this point it was concluded that, the modified reagent species of PCV complex can be represented as [PCV:SLS].

The dye- surfactant reaction may therefore be written as follows: $D-H + R-X \longrightarrow D-R + H-X$; where Dye is represented as D-H, while R-X as surfactant

Effect Of Mineral Salts :

Caiwen and Quingyue(4) studied the effects of inorganic salts on the color reactions of triphenylmethane dyes in the presence of surfactants, which found to exert some sensitizing effect on the color complex formation between TPM dyes and surfactants.

FIG : EFFECT OF MINERALS ON PCV

The effect of mineral salts on the absorption spectrum of PCV in the presence of SLS. The cations K^+ , Na^+ , $N_4^{H^+}$ did not show any effect on the absorbance of dye-detergent solution. Nitrates has shown some effect at pH 5.0, as the absorbance goes on increasing upto certain extent after which it remains unaltered. The mineral salts selected were the chlorides (KCl, NaCl, and NH₄Cl), the nitrates (KNO₃, NaNO₃, (NH₄)NO₃), and sulphates K₂SO₄, Na₂SO₄, (NH₄)₂SO₄. To study this in detail, different concentration of salt solutions were added to 1.0×10^{-3} M PCV solution containing 1.0×10^{-3} M SLS into it.

Conclusion :

The addition of surfactants changes maximum wavelength of absorption. It has been observed that addition of a anionic surfactant Sodium Lauryl Sulphate, causes a considerable decrease in the color intensity of organic dye, Pyrocatechol Violet. This color change is caused by the short range electrostatic forces on the surface of the micelle double layer. PCV changes its color after reaction with surfactants is due to the dissociation different chromogenic groups in it. As the dissociation is dependent on the change in hydrogen ion concentration of the solution of the dye, these are bound to show different absorption spectra at different pH values. The effect of surfactants on the dye solution was hence studied at different pH values varying from pH 1.0 to 12.0 by recording the absorption spectra in the entire visible range. Thus, the purpose of addition of surfactants to the deeply colored solutions of organic dyes is to produce some hypsochromic shift. As a consequence of this, the pK values of the dyes showed a decreasing trend in the presence of surfactants. This property arises due to the formation of dye - surfactant complexes. It was observed that maximum color change occured when the charge on the surfactant micelle is opposite to that of reagent ions. As a consequence this modified reagent (PCV- SLS) become very much suitable for sensitive microdetermination of different metal ions. It has been also found out that high concentration of some of the mineral salts for instance; nitrates, prevent the formation of dye- surfactant complex because of the inorganic anion displacing the dye as counter ion, and hence is to be avoided for such studies. From the present studies it can be concluded that, the binary complex formed by the interaction of Pyro Catechol Violet and surfactant, SLS, is a stable, water soluble and effective to be used for further microdetermination with greater sensitivity.

References

- 1. Ramanuskas, E; Bunikiene, L; Saprogoniene, M; Suliuniene, Zh. Anal. Khim; 24, 244 (1969).
- 2. Hartley, C.F; and Downay A.A; J. Phys. Chem.; 85, 835 (1984).
- 3. Svoboda, V; Chromy, V; Talanta; 12, 431, (1965).
- 4. Caiwen, Guo and Wang Quingyne; Huaxe Shiji; 6; 26;(1985).
- 5. Duchkova , H; Cermakova, L; Malat, M; Anal. Lett; 8, 115,(1975).
- Zhaoai , N; Yongfu, M; Fenxi Huaxue ; 13, 29 (1985).
- 7. Neelam Seedhar, Anju Saini ; Journal Of Surface Science and Technology; Vol.13, Issue 2-4, 1997.
- 8. Naeem et al; Monatsh.Chem; 131; 2000
- N.Haq M. Usman, A. Mansha, M.A.Rashid, M. Munir, U.A.Rana; J.Mol. Liq.;196 pp264-69, 2014

- 10. C.R. Vekhande and K.N.Munshi, J.Indian Chem. Soc., 50, 384 ,1973
- Renu Sharma, Ajar Kamal, Rakesh Kumar Mahajan; Detailed Study Of Interaction Between Eosin Yellow and Gemini Pyridinium Surfactants; RSC Advances; , Issue 75, 6, 71692-71704; 2016