
Handling Small Files in HDFS

Er. Amrinder Singh1, Dr. Gurjit Singh Bhathal2

12Department of Computer Science and Enginnering, Punjabi University, Patiala

---***---
Abstract – Big Data is becoming more popular and important
part in processing larger amount of files for better analytics.
This paper revolves around the area of handling small sized
files in Hadoop and how it impacts the performance of the
model. This also brings the solution for the problems related
with handling of large number of small-sized files like
memory problems of name-node server and reduced map
performance in Hadoop. Proposed solution includes the
sequence file architecture and is compared with the individual
file type architecture using Gutenberg Small files dataset.

Keywords – NameNode, DataNode, HDFS, MapReduce,
Hadoop

1. Introduction to HDFS

HDFS is an acronym for Hadoop Distributed File System.
Apache Hadoop is open-source framework with software
utilities. It is particularly used for processing of larger file
sizes and storage in a cluster of distributed models. HDFS
allows users to manipulate the data in a convenient way,
which is stored in different cluster systems. The main benefit
of HDFS is that it is highly reliable and tolerant to faults.
Since it has a master-slave architecture, it has NameNode and
DataNode.

Here, the master server is NameNode, which maintains the
file system as well as file metadata. Also, it regulates file
attributes such as permission of file, size, creation time and so
on. NameNode always tracks the list of DataNodes, while
handling the requests by the user. Besides this, it is
responsible for operations, for instance, opening, closing or
renaming the file and directories.

In the DataNode, data is being stored in the local system in the
form of different blocks. DataNode is responsible for
reporting about the list of blocks to the NameNode. It also
handles read and write request of a user. Furthermore, it
controls requests related to replication.

Figure 1.1 – HDFS
As shown in the aforementioned figure, whenever a request is
generated by the user to access the file name file.txt, the
request is sent to NameNode. NameNode holds all the

information related to the blocks where file is placed in
DataNode. In the given scenario, file.txt is present in Block A
and B along with the redundant file block. Every Block gets
duplicated or redundantly available in three different
DataNodes in the form of distributed system. In this type of
distributed system, the first copy of the file gets stored in rack
number 1 and the remaining 2 copies of files in another rack.
By doing so, tolerance of fault escalates during the event of
updating /creation of file or failure of a system. Furthermore,
because the data is present in the same file and can be
accessible by DataNode, communication to and forth is much
more convenient, thus avoiding the unnecessary bandwidth
usage between the rack structure. It has been clearly seen in
the given figure that NameNode holds the information of list
of DataNodes in each and every rack.

1.2 About the Small Files

In the Hadoop File system, files that are lesser in block size
than Hadoop Block size are considered as small files. It can be
said that files lesser than 75% of Hadoop block size are to be
considered as small files. By default, the block size of Hadoop
is 64 megabytes, however, larger size blocks are in the range
of 128 megabyte and 256 megabyte and so on.

1.2.1 What are the reasons behind small files??

Firstly, there are files which are small by default such as
collection file images or text file data. Secondly, as the
demand of data and information is rising, collection of files
systems are in vogue, which can be accessed without any type
of modifications where data is stored in such file systems.
Lastly, when extended number of tasks are being performed
unnecessarily, chunks of small data are generated.

1.3 Problems associated with Small Files

Hadoop is mainly designed to handle large data size files.
Therefore, it does not perform well when we try to parse file
having smaller file sizes. There are generally two problems
which are linked with small files in HDFS:

1. Memory Problem of NameNode server: In
Hadoop, every file is considered as object, which
means each file and directory represent an individual
object. The object is often approximately of 300
bytes of NameNode, in which 150 bytes are reserved
for file name and its properties and the remaining
150 bytes are for DataNode information and block
information. To illustrate this, 30million files having
block size of 300 bytes of NameNode memory
require approximately 720 Gigabytes of NameNode
memory. As a result, NameNode needs 720Gb of
data to be loaded from the disk, which will aggravate
the performance and so as does the time. Other than
this, since NameNode acts as Master node, it has to
maintain the information regarding the block of

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 12, 2020

ISSN NO : 1869-9391

PAGE NO: 46

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research

DataNode. DataNode sends updates to NameNode
about the change in block information due to which
consumption of network bandwidth will escalates.
Lastly, if the number of blocks are more, NameNode
will drain out the addressing capacity. Consequently,
a large proportion of space will remain unutilized
because of this.

2. Reduced Map performance:
It is always a good practice to handle larger files
having small quantity rather than handling larger
quantity of small files as it requires less input/output
tasks on a disk. Therefore, small files with larger
quantity downgrades the performance of the Map.
Another reason is that one block usually corelates
with a file and the map jobs are segregated in such a
way that every block assign with map process. So, if
we have 10000 files with 10 Megabytes of data, each
file will have a separate map task. Therefore, we will
have 10000 map tasks along with map task
configured in JVM. Instead of increasing the queue
memory, we can process 800 files having 128
Megabytes of file size. By doing this, we will need to
process 800 map tasks only and thus the performance
will be improved. We have demonstrated the
performance of different system having small files
with larger in number and smaller number of large
files. There are plethora of techniques to resolve the
issue if Small Files. However, we will use sequence
file technique and combine ot with
CombineFileInputFormat technique to mitigate the
number of map tasks.

2. Related Work
A study proposed by Jilan et.al.[1], depicts that in order to
resolve the issue of small file, sorting of all the small sized
files is required in a directory or folder and further
compressing them into one larger one. This helps to shrink
down the metadata present in NameNode. A single block can
be created only if the total size of all the files is less or
equivalent to the block’s default size. In a case-scenario where
file is distributed in more than one block, whole file data
needs to be stored in the second block. The concept of global
mapping is present that has the information of indexes for
easy access of file system. Another similar type of work is
proposed by Dong et.al. his software name is BlueSky, which
is quite renowned courseware. Inn this, a directory like
structure is created where information of similar files gets
stored into single directory or folder along with the images
having different screen-resolution. After that, all the files get
amalgamated into one larger type of file. Also, the index is
being created at the initial phase of the merged file. This
method offers the technique of prefetching that fetches the
files for further computation. There are two types of fetching
have been discussed, which are as follows:

a. Local Index prefetching – In this Index file gets
fetched and processed in the cache memory to avoid
time consumption. It retrieves the data at much faster
speed as there is no longer requirement to contact the
NameNode.

b. Correlated File Prefetching- In this method, different
corelated files get fetched beforehand in the cache as
well.

In the [3] work, focus is put entirely on a particular area, in
which each client has been given the certain permission to use

the space and number of file system for better outcomes. It
uses the technique of har-balling which is a compression
method of Hadoop API. It protects the job to be halted
abruptly without stopping forcefully during the event of space
drainage. By using this, number of tasks are set dynamically
to gain optimization of data block size. The main aim is to
merge small data files into larger one that could be utilized for
map-reduced processing and thus reducing the space by the
metadata at NameNode system. Also, it offers the concept of
extended HDFS solution, where files are compressed and
prefetched to dwindle the load at NameNode and thus
improving the concept of file accessing. In our model, both
the concepts of courseware software and weather data have
been taken into account.

3. Problem Definition

The solution has been provided to solve the problem with
Small Files in Hadoop Distributed File System. Also, it has
been discussed what are the problem caused by Small Files.

3.1 About the Problems with Small Files

There are several problems associated and caused by Small
files as it directly affects the performance of the NameNode
address space. Firstly, it requires extra system resources to
process the files. Furthermore, Small Files require extra
computational time for Map-Reduce computation. This
project particularly focused to provide the optimal solution to
this problem of having Small Files and its computational cost.
Other than this, our work will compare the evaluation of the
NameNode memory issue through monitoring and utilizing
the Small files before and after the issues being resolved.
Also, the overall performance of the Map-Reduce will be
accessed.

4. Proposed Solution Model

The solution involves collaborating the different small files in
a particular directory to make a one large file for easy
computation. We will further discuss how to handle Sequence
File and how to build them to mitigate or eradicate the
problem in HDFS. We have used Gutenberg datasets to
evaluate the performance and test the efficacy of the model.
Also, the performance factor of HDFS file system that is
affected by different factors has also been discussed in the
upcoming section.

4.1 Sequence File

A sequence of file is being generated to merge or collaborate
the small files in a specific directory. The sequence file
contains binary pairs of keys and values. The key is related to
the filename, whereas the value relates to the content of the
file. A sequence file can be segregated into multiple files and
processed, which means sequence files can be pushed into
multiple map tasks only if it is long enough. The sequence file
contains the information of header along with one or more
records. The format of header and record has been shown in
figure below.

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 12, 2020

ISSN NO : 1869-9391

PAGE NO: 47

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research

Figure 2 – Sequence File Header and Record Format

The SEQ behaves like an identifier for the sequence file,
which has 3 bytes information along with the 1byte version
number. There are 3 types of sequence file formats, which are
as follows:

1. Uncompressed file format- In this, the pair of keys
and values is stored without any alteration.

2. Record Compressed – In this, just the value is stored
without alteration.

3. Block Compressed – Data is stored only when the
threshold value is matched. If the threshold is
reached to the value, pairs of key and value get
compressed separately and sync marker is attached in
between the blocks.

Here the flags are representing the format of the header.
Record contains the length of key along with the record length
which is followed by key length. The Sync Marker is usually
attached after each 100 bytes.
The Sequence Files are the baseline of several other file types
such as MapFile, SetFile and ArrayFile that have the potential
to retrieve the key and value pairs. If random access of file is
required, Map file can be used as it holds the information
about the Index File to gather values based on key or
Filename.

4.2 Implementation of HDFS

We will affiliate number of small file and form a sequence file
in a specific directory. This can be done by making custom
classes that are inherited from Hadoop API’s which are as
follows:

1. Custom Format Input Class through extension of
FileInputFormat- Every content of file will be
integrated as a single entity or record.

2. Custom Record Reader using RecordReader- Whole
file will pe processed and a Byte of array will be
generated by copying the data of a file.

3. Custom Mapper Class using extended Mapper - The
name of the file will be stored as keys while the
content of the file will be stored as values.

4. Sequence generation of File – This will create the
sequence file as its output. Also, it will utilize the
byte array and will club small file into a Sequence
File.

By using CombineFileInputFormat API of Hadoop, we can
achieve higher performance of the model as it helps us to

reduce the operations of Mapper while doing the Map-Reduce
task to generate the Sequence File.

5. Setup Experiment and its Evaluation

5.1 Multi-Node Hadoop Cluster Setup

Multiple-Node of Hadoop cluster contains both NameNode
and DataNode is present. The NameNode and DataNode run
on Mac OS X El Capitan along with 8GigaBytes of RAM. As
far as the processer is concerned we have used Intel Dual-
Core i5 1.6 GHz of speed. 3 values is set of replication factor
and 64 Mb is the default block size. As discussed above,
NameNode acts as ‘Master’ whereas ‘Slave’ is DataNode.
Apart from this, Secured Shell or SSH connection has been
established to communicate between the Master and Slave.

5.2 Experimental Results:

For the testing purpose, the datasets have been taken from
Gutenberg, which is a collection of Electronic-books available
free of cost. We have gathered the data of about 700 e-books
from the website which is approximately 200 KB each. Also,
we have tested and conducted an experiment to testify two
following parameters:

1. Metadata size of NameNode
2. Performance of Map Reducer

Figure 3 – Experiment Results in Table
One thing can be noted that metadata space requirement is
quite less than several (696) individual small files. According
to this, 150 Bytes is required for NameNode to hold the
information regarding the files that are mapped with blocks.
Other than this, additional 150 Bytes is needed for block
allocation in DataNode. Consequently, it is vivid that large
number of small sized files require additional resources that
reduce the performance of the NameNode.

Performance of the Map Reducer:

We can calculate the performance of Map-Reduce is through
word-count program on sequence file and every single file.
The outcomes have been discussed though the following
table:

Figure 4 – Performance with MapReduce
As per the aforementioned tabular data, it has been seen that
Map operations for 696 Mapper operations are quite high,
which means JVMs have been allocated each time it requires
to compute tasks, file or block read like operations.
Nonetheless, sequence file requires only single map operation.
Moreover, the overall execution time is much more optimal
and utilized properly for computing as compared with
processing individual files.

CONCLUSION
Handling large number of small files is always a big problem
in Hadoop which is addressed in this paper by proposing a
solution that using sequence of files against the individual file

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 12, 2020

ISSN NO : 1869-9391

PAGE NO: 48

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research

system. Large number of small sized files creates a big issue
related with memory of the name-node server and provides
reduced map performance. We have used Gutenberg dataset
of small sized files and found that sequence of files based
architecture provides better performance as compared with the
individual files system with both metadata and map reduced
functions. Time taken is reduced from 885msec to 37msec
when sequence files method is compared with individual for
mapreduce function and NameNode memory space occupied
is also reduced from 208800 bytes to 300 bytes from
individual to sequence file system.

References
[1] An Improved Small File Processing Method for HDFS : Jilan
Chen, Dan Wang, Lihua Fu, Wenbing Zhao @ JDCTA 2012
[2] A Novel Approach to Improving the Efficiency of Storing and
Accessing Small Files on Hadoop: A Case Study by PowerPoint
Files : Bo Dong, Jie Qiu, Qinghua Zheng, Xiao Zhong, Jingwei Li,
Ying Li @ IEEE 2010
[3] Improving Metadata Management for Small Files in HDFS :
Grant Mackey, Saba Sehrish, Jun Wang @ IEEE 2009
[4] Improving Hadoop Performance in Handling Small Files : Neethu
Mohandas and Sabu M. Thampi @ Springer 2011
[5] Improving the Performance of Processing for Small Files in
Hadoop: A Case Study of Weather Data Analytics : Guru Prasad M
S, Nagesh H R , Deepthi M @ IJCSIT Vol5 2014
[6] Managing Small Size Files through Indexing in Extended Hadoop
File System : K.P.Jayakar, Y.B.Gurav @ IJARCSMS 2014
[7] Siddiqui, I.F., Qureshi, N.M.F., Chowdhry, B.S. et al. Pseudo-
Cache-Based IoT Small Files Management Framework in HDFS
Cluster. Wireless Pers Commun 113, 1495–1522 (2020).
https://doi.org/10.1007/s11277-020-07312-3
[8] Ahad M.A., Biswas R. (2019) Handling Small Size Files in
Hadoop: Challenges, Opportunities, and Review. In: Nayak J.,
Abraham A., Krishna B., Chandra Sekhar G., Das A. (eds) Soft
Computing in Data Analytics. Advances in Intelligent Systems and
Computing, vol 758. Springer, Singapore.
https://doi.org/10.1007/978-981-13-0514-6_62
[9] Gupta, L.: HDFS—Hadoop Distributed File System Architecture
Tutorial (2015). http://howtodoinjava.com/big-data/hadoop/hdfs-
hadoop-distributed-file-system-architecture-tutorial/
[10] Dong, B., Zheng, Q., Tian, F., Chao, K.-M., Ma, R., Anane, R.:
An optimized approach for storing and accessing small files on cloud
storage. J. Netw. Comput. Appli. 35, 1847–1862 (2012)
[11] Vorapongkitipun, C., Nupairoj, N.: Improving performance of
small-file accessing in hadoop. In: 2014 11th International Joint
Conference on Computer Science and Software Engineering
(JCSSE), pp. 200–205. IEEE (2014)
[12] NCDC, “ https://www.ncdc.noaa.gov/data-access”
[13] Gutenberg, “ http://www.gutenberg.org/”

GIS SCIENCE JOURNAL

VOLUME 7, ISSUE 12, 2020

ISSN NO : 1869-9391

PAGE NO: 49

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research

