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Abstract—In order to improve damping dur-
ing low frequency oscillations in a power sys-
tem, this work provides a state feedback switch-
ing control method for the power system stabi-
lizer (PSS). Extensive research has been con-
ducted by examining the possibility of switch-
ing between two static gain vectors: one for
the Linear Quadratic Regulator (LQR) con-
troller and another for the Pole Placement con-
troller. The goal is to combine the structures
of both controllers and create a new struc-
ture that ensures both the desired performance
and stability of the closed loop system. Us-
ing MATLAB/SIMULINK, the suggested feed-
back switching model is evaluated on the mod-
ified SMIB linearized Phillips heffron model of
a power system. By the end of the study, sta-
bilization and improved performance over the
two individual controllers are achieved using the
suggested feedback switching control between
two static controller gains.

Index Terms—SFSC, PSS, LQR, SMIB,
Phillips-Heffron Model.

1 Introduction

In the study of control systems, state feedback
switching control is the study of switching between var-
ious controllers in accordance with a set of rules. By
alternating between several feedback systems, one can
combine the beneficial aspects of each structure and
add additional characteristics that are absent from any
of the others.

An adaptive neural network-based Sliding Mode
Control (SMC) for a single machine power system’s
PSS has been proposed by Hussain N. and Al-Duwaish

[1]. In essence, the SMC is a switching feedback con-
trol. The findings of the simulation show that using
adaptive SMC significantly improves controller per-
formance. The authors of [2] present a methodology
that uses switching controllers with limited minimum
switching intervals to make the power system controller
design less conservative. The architecture of PSS for
SMIB power system based on fuzzy logic and output
feedback sliding mode controller (SMC) is proposed by
Vitthal Bandal and B. Bandyopadhyay [3]. It is dis-
covered that the controller’s design offers good damp-
ing enhancement. A self-tuning regulator (STR) with
multi-identification models and a minimum variance
was proposed by the authors in [4].

Power system instability is discussed by Michael J.
Basler Richard and C. Schaefer, along with the sig-
nificance of quick fault clearing in order to provide
dependable power output [5]. The use of additional
excitation control signals to increase the dynamic sta-
bility of power systems has drawn a lot of interest in
recent decades. The modest signal stability, line load-
ing, high gain, rapid acting excitation devices, and high
impedance transmission lines are all explained by the
k-constant model that was created by Phillips and Hef-
fron. The power system stabilizer is a supplementary
control system, which is often applied as part of exci-
tation control system. The basic function of the PSS
is to apply a signal to the excitation system, creat-
ing electrical torques to the rotor, in phase with speed
variation, that damp out power oscillations.

PID-PSS and traditional PSS have been compared
for effectiveness, according to Balwinder Singh Sur-
jan and Ruchira Garg [6]. A method for fine-tuning
a fixed structure PSS’s parameters is developed in [7]
using particle swarm optimization. The method pro-
vides designers with the adaptability to strike a balance
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between opposing design goals, overshoot, and control
constraint. The power system stabilizer (PSS) was de-
vised by M K Ei-Sherbiny and Ali M. Yousef [8] using
the LQR Approach. Robustness control property with
power system parameters is possessed by the suggested
PSS. For the modified Heffron-Phillips model, several
power system stabilizer design methodologies are pre-
sented in [9]. The proposed IPSO algorithm in [10]
was utilized to find the optimize parameters of PSS
for SMIB system by minimizing the fitness function.
Using the proposed algorithm, the Load frequency os-
cillations can be reduced appropriately. In [11] the free
model approach for system identification and its appli-
cation to design a power system stabilizer is presented.
The free model is transformed to a linear state-space
model and the linear quadratic regulator technique is
used to design a PSS. The free model thus developed
is shown to be controllable,

This paper’s goal is to present a switching approach
that will allow the power system stabilizer to alter-
nate between two separate controllers, known as the
primary and secondary. The pole placement approach
is used to construct the secondary controller, which is
made to follow the switching rule of the closed loop
eigenvalues, while the primary controller is generated
from the optimum control theory of LQR.

The structure of the paper is as follows. The lin-
earized Phillips-Heffron model for the PSS is explained
in Section II. The proposed switching rule in Section III
and the switching model for the Philips-Hefron plant
with PSS follow. The proposed method’s simulation
results are explained in Section IV. The next sections
that follow contain the discussions and conclusion.

2 SMIB power system model

For the purposes of these studies, a single machine-
infinite bus (SMIB) system is taken into consideration.
By applying Thevenin’s analog of the external trans-
mission network to the machine, a machine linked to a
larger system via a transmission line can be reduced to
a SMIB system. Figure 1 depicts a block diagram of
the linearized model of the power system under study,
which included a synchronous machine connected to
an infinite bus bar via a transmission line. The follow-
ing can be used to express its state space formulation
[8,12]:

∆̇δ = ω0∆ω (1)

∆̇ω =
1

M
(−K1∆δ −D∆ω −K2∆E

′

q) (2)

˙∆E′
q =

1

T
′
do

(−K4∆δ −
∆E

′

q

K3
+ Efd) (3)

˙∆Efd =
1

TA
(−KAK5∆δ−KAK6∆E

′

q −∆Efd+KAu)

(4)

In a matrix form as follows:

ẋ(t) = Ax(t) +Bu(t) (5)

Figure 1: Block Diagram of Power System

where, the state variables are the rotor angle devi-
ation (∆δ), speed deviation (∆ω), q-axis component
(∆E′

q), field voltage deviation (∆Efd) A and B rep-
resent the state and control input matrices given by

A =



0 ωo 0 0

− k1
M

− D
M

− k2
M

0

− k4
T ′

do
0 − k3

T ′
do

1
T ′

do

−kAk5
TA

0 −kAk6
TA

1
−TA



B =

[
0 0 0 KA

TA

]T
The appendix section at the end of the paper con-

tains descriptions of all the pertinent variables and k-
constants that were utilized in the experiment, along
with their respective values.
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3 Proposed PSS as state feedback
switching control

This section will present the suggested switching
technique and mathematical modeling of the Philips-
Heffron system using PSS devices as switched linear
systems.

3.1 Switched Linear Systems

For more than fifty years, the systems and control
literature has focused heavily on the topic of studying
switched linear systems. A switching law that controls
the transitions between various subsystems makes up a
switched system, which consists of a collection of sub-
systems. It has been demonstrated that the perfor-
mance of a system with proper switching control out-
performs that of a system without switching control.

A switched-linear system model (refer Fig.2) for the
current problem is as follows [13]:

ẋ(t) = Aσ(t)x(t) (6)

ẋ(t) = A−1x(t) x
′
Sx ≤ 0 (7)

= A1x(t) x
′
Sx > 0

The Switching Signal σ(t) is given by

σ(t) = sgn(x(t)
′
Sx(t)) (8)

The switching signal σ(t) indicates which of the ma-
trices A−1 or A1 is being used at any given time; when
σ(t) = 1, A1 = (A + BK1), while when σ(t) = −1,
A−1 = (A+BK2).

Figure 2: General implementation of switched linear
systems

For the proposed algorithm based on [13,14] follow-
ing definitions and conditions are required:

A. Switching matrix is given by S = F
′

1F2.

B. The Switching Boundary Vectors F1 & F2 are
normal vectors to the stable invariant subspace of the
matrices A + BK1 and A + BK2 respectively. i.e.,
F1⊥V1 & F2⊥V2.

C. Let,

Eig (A+BK1) = (s+ α1)(s+ α2)(s+ ˙β1)(s+ ˙β2)

Eig (A+BK2) = (s+ α1)(s+ α2)(s+ β1)(s+ β2)

where, β1 = −β2 and β̇1 = •β̇2

The optimal control theory of the Linear Quadratic
Regulator (LQR) and the Pole Placement approach,
respectively, yielded the two controller gains, K1 &K2.
For the purpose of completeness, a brief explanation of
the LQR and Pole placement control mechanisms is
provided.

3.2 Linear Quadratic Regulator Control
When the dynamic equations are linear and the ob-

jective function is a quadratic function of x and u, there
is a unique situation of an optimum control issue that
is especially significant. In this instance, the feedback
law that results is referred to as the linear quadratic
regulator (LQR). The LQR controller minimizes the
error criteria in Eqn.(9) to get the gain parameters.
Let us consider a linear system where (A, B) is sta-
bilizable and is characterized by Egn. (5). Next, the
matrix K of the LQR vector is determined by the cost
index, which is

J =
1

2

∫ ∞

0

(xTQx+ uTRu)dt (9)

Where Q and R are the real symmetric or positive-
definite Hermitian matrices. Using the equations
above,

K = −R−1BTP (10)

and hence the control law is,

u(t) = −Kx(t) = −R−1BTPx(t) (11)

In which P must satisfy the reduced Riccati equa-
tion:

PA+ATP − PBR−1 +BTP +Q = 0 (12)

With the LQR function, you can select two parame-
ters, R and Q, that together determine how important
each input and state are to the overall cost function
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you’re seeking to optimize. In essence, all outputs are
controllable with the LQR approach.

3.3 Pole Placement Control

The foundation of pole placement control design is
the placement of the closed loop system’s poles at any
desired location using state feedback via the proper
state feedback gain matrix. The first step in the de-
sign process is to identify the appropriate closed loop
poles based on the steady state requirements as well
as the transient response and/or frequency response
requirements, such as speed, damping ratio, or band-
width.

The gain matrix K is designed in such a way that:

Step 1: Check whether the system is controllable

M =
[
A AB A2B −−−AN−1B

]
|M | ≠ 0

Step 2: Find (SI−A) = sn+a1s
n−1+−+an−1s+an

Step 3: Locate the matrix of transformation T

Step 4: Decide where the poles should be placed

(s+α1)(s+α2)+−+(s+αn) = sn+α1s
n−1+−αn

Step 5: Solve for K using,

K =
[
α2 − a2 α1 − a1 −−− αn − an

]
T−1

3.4 Switching Algorithm

Design of a stabilizing switching control law is equiv-
alent to finding switching boundary vectors F1 & F2.
This can be achieved by carrying out the following
steps[13,14]:

Determining the switching boundary vectors F1 &
F2 is the same as designing a stabilizing switching con-
trol law. The following actions can be taken to accom-
plish this[13, 14]:

1. Design a secondary controller K2 in such a way
that it has n − 1 closed loop real eigenvalues lo-
cated at the left half of the s-plane.

2. Select a gain vector K1 (primary controller) such
that the closed loop eigenvalues of (A+BK1) has
n − 2 common eigenvalues of (A + BK2) and the
remaining eigenvalues are not real.

3. To design F1, multiply the left side eigenvalue
polynomials of (A + BK1) and select the coeffi-
cients of expanded polynomial in ascending pow-
ers of s.

4. To design F2 = [F1 + µω2], ω2 is calulated by
multiplying the polynomial that is removed while
designing the vector F1(right side eigenvalue) with
other (n− 2) left eigenvalues by selecting µ < 0.

4 Simulation Results

A and B matrices below explain the linearized
Phillps-Heffron model of SMIB installed with PSS,
which serves as the experimental setup used to evaluate
the suggested algorithm. LQR and the pole placement
technique are used to obtain the controllers K1 and
K2, respectively. Depending on the state variables,
the matrix C is a vector with zeros and one in any one
location. Below are also the suggested state feedback
switching control vectors, F1 and F2.

A =


0 377 0 0

−.1317 0 −.1104 0

−.2356 0 −.463 .1667

15.47 0 −194.81 −16.667



B =
[
0 0 0 25

0.06

]T
4.1 Primary Controller Design:

The matrix A1 has n−2 common eigenvalues of A−1,
and the other two eigenvalues are not real, according
to the switching algorithm K1.

Using LQR control Algorithm,

[K,S,E] = lqr(A,B,Q,R,N) (13)

According to the current methodology in [15], the
assumptions in Equation (13) are as follows: matrix
N = 0, matrix R = 50, and Q

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 .001


Solving Egn. (13), the Riccati equation S is

S =


1.8 0 1.5 0

0 5329 −34.4 0

1.5 −34.4 1.9 0

0 0 0 0


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Furthermore, K1 is the optimal gain matrix that is
computed.

K1 =
[
0.1217 −0.1090 0.1292 0.0015

]
The eigenvalues are as follows

P =


−14.3968

−2.8719

−0.2429 + 7.0208i

−0.2429− 7.0208i


4.2 Secondary Controller Design:

The matrices A−1 and A1 contain real n− 1 stable
eigenvalues and are required to share n−2 eigenvalues,
as per the switching algorithm. In this study, we will
(arbitrarily) ”move” the eigenvalues of the matrix A1,
which are located at −0.2429+ 7.0208i and −0.2429−
7.0208i, to the eigenvalues of +1 &− 1 for the matrix
A−1.

Using pole placement technique, place poles at
P =

[
−14.3968 −2.8719 −1 1

]
. K = place(A,B, P )

K2 =
[
−0.1654 112.7865 −0.7135 0.003

]
4.3 Switching boundary vectors Design:

A normal vector to a stable invariant subspace of
the matrix A+BK2 is the switching boundary vector
F1:

(s+ 14.3968)(s+ 1)

(s+2.8719)
Stacking the co-efficients of the resulting expanded

polynomial into the vector F1 in ascending powers of
s:

F1 =
[
41.3461 58.6148 18.268 1

]
Recall, F2 = ω

′

1 + µω
′

2 where, ω
′

1 = F1

ω2 corresponds to the left eigenvector with the eigen-
value that is removed form (A+BK2) to form the char-
acteristic polynomial of (A+BK1), which in this case
is the left eigenvector corresponding to the eigenvalue
-1. i.e., (s+ 14.3968)(s+ 2.8719)(s− 1).

ω2 =
[
−41.346 24.0771 16.2687 1

]
According to the procedure, µ < 0 to achieve a sta-

ble closed loop interconnection. If, we choose µ = −1,
the switching boundary vector F2 is given by

F2 =
[
82.6922 34.5377 2 0

]

Figure 3: PSS as Switching control for power system

Figure 4: rotor angle deviation response

Figure 5: speed deviation response
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Figure 6: rotor angle deviation response

Figure 7: speed deviation response

Figure 8: switching signal response

5 Discussions
Plotting the dynamic response curves for the state

space variables, Rotor angle deviation (∆δ) and Speed
deviation (∆ω), using the legends K1, K2, and Switch
K1 and K2 for the proposed state feedback switching
control for the PSS are displayed in Figs. 4-7. Figure
8 also displays the Switching Signal σ(t) as a Function
of time.

Figures 4–7 indicate that, in comparison to the sys-
tem response with individual controllers K1 (which
makes the system stable) and K2 (which makes the
system unstable) with respect to settling time, the pro-
posed state feedback switching control between LQR
and pole placement method offers better performance
along with the stabilization in the Rotor angle and Ro-
tor speed deviations.

6 Conclusion
Using Heffron Phillip’s model, the power system

stabilizer (PSS) is introduced to the state feedback
switching control approach. The control law alternates
between two separate controllers (pole placement &
LQR). When compared to the pole placement approach
and individual LQR [15] controllers, the suggested
switching control offers both improved performance
and stabilization. The digital results demonstrate how
well switching control can improve the damping of os-
cillations in the power system.

Appendix

Choosing the machine parameters at nominal oper-
ating point as

Xd = 1.6, Xq = 0.32, Xe = 0.4p.u.

M = 10, ω0 = 377, T
′

d0 = 6

D = 0, P = 1p.u, Q = 0.25p.u

KA = 25, TA = 0.06s.
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