MAXIMAL INCIDENCE EDGE PRIME GRAPHS

Dr. Sunoj B S

Associate Professor, Department of Mathematics, Government Polytechnic College, Attingal

ABSTRACT . In this paper I introduce a new labeling. I prove that some tree graphs are maximal incidence edge prime graphs. Further I prove sum of the edge values is equal to sum of the vertex values.

1. INTRODUCTION

I consider simple finite and undirected graphs. For all terminology and notations I follow Harary[2].First I provide some definitions useful for present work.

Definition 1.1 Star graph is a special type of graph in which n vertices have degree one and a single vertex have degree n. This graph is denoted by the symbol $K_{1,n}$.

Definition 1.2 Graph obtained by adding single pendant edge to each vertex of a path P_n is called comb graph and is denoted by $P_n \Theta K_1$.

Definition 1.3 Graph obtained by adding two pendant edges to each vertex of path P_n is called centipede graph and is denoted by $P_n \Theta K_{1,2}$.

Definition 1.4 Graph obtained by adding two pendant edges to each internal vertex of path P_n is called twig graph and is denoted by $T_w(n)$.

Definition 1.5 Bi star B(n,n) is the graph obtained by joining the apex vertices of two copies of $K_{1,n}$ by an edge.

Definition 1.6 A Coconut Tree CT(m, n) is the graph obtained from the path Pn by appending m new pendent edges at an end vertex of P_n .

Definition 1.7 A graph obtained from a given graph by breaking up each edge into two edges by inserting a vertex between its two ends is called sub division graph.

Definition 1.8 Greatest common incidence number (gcin) of a vertex of degree two or more is the greatest common divisor of the labels of the edges incident on that vertex.

Definition 1.9 A labeled graph is said to be an incidence edge prime graph, if the gcin of all vertices of degree greater than one is one.

Definition 1.10 A labeled graph is said to be a maximal incidence edge prime graph, if the edge label is the maximum of the end vertex labels.

2. MAIN RESULTS

Theorem 2.1 Path P_n is a maximal incidence edge prime graph.

Proof: Let $a_1, a_2, ..., a_n$ be the vertices of the path. Then $|V(P_n)| = n$ and $|E(P_n)| = n-1$.

I define a function $f: V \rightarrow \{0, 1, \dots, n-1\}$ which labels the vertices by

 $f(a_i) = i-1$ for all i from 1 to n.

I define a function f^* : E \rightarrow {1,2,...,n-1} which labels the edges by

 $f^*(a_i a_{i+1}) = Max \text{ of } \{f(a_i), f(a_{i+1})\}$

$$= \text{Max of } \{i-1, i\}$$

= i, for all i from 1 to n-1.
gcin of (a_{i+1}) = gcd of { $f^*(a_{i}a_{i+1}), f^*(a_{i+1}a_{i+2})$
= gcd of {i, i+1}
= 1, for all i from 1 to n-2.

Hence path P_n is a maximal incidence edge prime graph.

Example 2.1 Maximal incidence edge prime labeling of path P5 is shown in Figure 1.

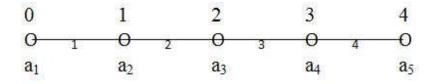


Figure 1

Theorem 2.2 Star graph K_{1,n} is a maximal incidence edge prime graph. Proof: Let a, a₁,a₂,...,a_n be the vertices of the graph. Then $|V(K_{1,n})| = n+1$ and $|E(K_{1,n})| = n$. I define a function $f: V \rightarrow \{0,1,...,n\}$ which labels the vertices by $f(a_i) = i$ for all i from 1 to n. f(a) = 0. I define a function $f^*: E \rightarrow \{1,2,...,n\}$ which labels the edges by $f^*(aa_i) = Max$ of $\{f(a), f(a_i)\}$ = Max of $\{0, i\}$

$$= i \text{ for all } i \text{ from 1 to n.}$$

gcin of (a)
$$= \gcd \text{ of } \{f^*(aa_1), f^*(aa_2) \\ = \gcd \text{ of } \{1, 2\} \\ = 1.$$

Hence $K_{1,n}$ is a maximal incidence edge prime graph.

Example 2.2 Maximal incidence edge prime labeling of $K_{1,4}$ is shown in Figure 2.

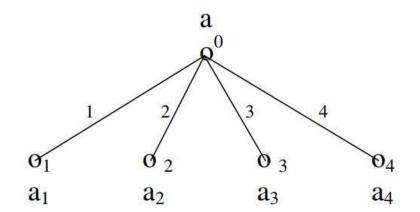


Figure 2

Theorem 2.3 Comb graph $P_n \odot K_1$ is a maximal incidence edge prime graph. Proof: Let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be the vertices of the graph. Then $|V(P_n \odot K_1)| = 2n$ and $|E(P_n \odot K_1)| = 2n-1.$ I define a function $f: V \rightarrow \{0, 1, \dots, 2n-1\}$ which labels the vertices by $f(a_i) = 2i-2$ for all i from 1 to n. $f(b_i) = 2i-1$ for all i from 1 to n. I define a function f^* : E \rightarrow {1,2,...,2n-1} which labels the edges by $f^{*}(a_{i}a_{i+1})$ = Max of $\{f(a_i), f(a_{i+1})\}$ = Max of {2i-2, 2i} = 2i, for all i from 1 to n-1. $f^*(a_ib_i)$ = Max of {f(a_i), f(b_i)} = Max of {2i-2, 2i-1} = 2i-1, for all i from 1 to n. = gcd of { $f^{*}(a_1b_1)$, $f^{*}(a_1a_2)$ gcin of (a_1) = gcd of {1, 2} = 1.gcin of (ai+1) = gcd of { $f^*(a_i a_{i+1}), f^*(a_{i+1} b_{i+1})$ } = gcd of {2i, 2i+1} = 1, for all i from 1 to n-1.

Hence $K_{1,n}$ is a maximal incidence edge prime graph. Example 2.3 Maximal incidence edge prime labeling of P₅ \odot K₁ is shown in Figure 3

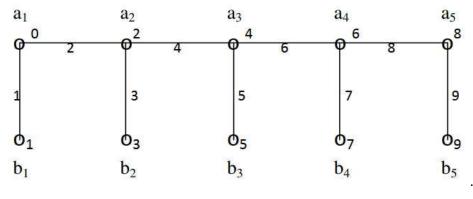


Figure 3

Theorem 2.4 Centipede graph $P_n \odot K_{1,2}$ is a maximal incidence edge prime graph. Proof: Let $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n, c_1, c_2, ..., c_n$, be the vertices of the graph. Then $|V(P_n \odot K_{1,2})| = 3n$ and $|E(P_n \odot K_{1,2})| = 3n-1$. I define a function $f: V \rightarrow \{0, 1, ..., 3n-1\}$ which labels the vertices by $f(a_i) = 3i-2$ for all i from 1 to n. $f(b_i) = 3i-3$ for all i from 1 to n.

 $f(c_i) = 3i-1$ for all i from 1 to n.

I define a function f^* : E \rightarrow {1,2,...,3n-1} which labels the edges by $f^*(b_ib_{i+1}) = Max \text{ of } \{f(b_i), f(b_{i+1})\}$ $= Max \text{ of } \{3i-3, 3i\}$ = 3i, for all i from 1 to n-1. $f^*(a_ib_i) = Max \text{ of } \{f(a_i), f(b_i)\}$ $= Max \text{ of } \{3i-2, 3i-3\}$ = 3i-2, for all i from 1 to n. $f^*(b_ic_i) = Max \text{ of } \{f(b_i), f(c_i)\}$ $= Max \text{ of } \{3i-3, 3i-1\}$ = 3i-1, for all i from 1 to n.gcin of (bi) $= \gcd \text{ of } \{f^*(a_ib_i), f^*(b_ic_i)\}$ $= \gcd \text{ of } \{3i-2, 3i-1\}$ = 1, for all i from 1 to n.

Hence $P_n \odot K_{1,2}$ is a maximal incidence edge prime graph. Example 2.4 Maximal incidence edge prime labeling of $P_4 \odot K_{1,2}$ is shown in Figure 4.

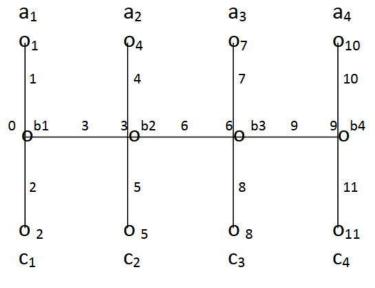


Figure 4.

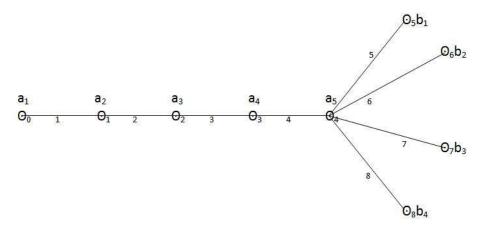
Theorem 2.5 Coconut tree graph CT(m,n) is a maximal incidence edge prime graph. Proof: Let $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n$ be the vertices of the graph. Then |V(CT(m,n))| = m+n and |E(CT(m,n))| = m+n-1. I define a function $f: V \rightarrow \{0, 1, ..., m+n-1\}$ which labels the vertices by $f(a_i) = i-1$ for all i from 1 to m. $f(b_i) = m+i-1$ for all i from 1 to n. I define a function $f^*: E \rightarrow \{1, 2, ..., m+n-1\}$ which labels the edges by $f^*(a_i a_{i+1}) = Max \text{ of } \{f(a_i), f(a_{i+1})\}$ $= Max \text{ of } \{i-1, i\}$ = i, for all i from 1 to m-1.

$$f^{*}(a_{m}b_{i}) = Max \text{ of } \{f(a_{m}), f(b_{i})\}$$

= Max of {m-1, m+i-1}
= m+i-1, for all i from 1 to n.
gcin of (a_{m}) = gcd of {f^{*}(a_{m-1}a_{m}), f^{*}(a_{m}b_{1})}
= gcd of {m-1, m}
= 1.
gcin of (a_{i+1}) = gcd of {f^{*}(a_{i}a_{i+1}), f^{*}(a_{i+1}a_{i+2})}
= gcd of {i, i+1}
= 1, for all i from 1 to m-2.

Hence CT(m,n) is a maximal incidence edge prime graph.

Example 2.5 Maximal incidence edge prime labeling of CT(5,4) is shown in Figure 5.



Theorem 2.6 Bi star graph B(m,n) is a maximal incidence edge prime graph. Proof: Let $x,y,a_1,a_2,...,a_m$, $b_1,b_2,...,b_n$ be the vertices of the graph. Then |V(B(m,n))| = m+n+2 and

|E(B(m,n))| = m+n+1.

I define a function $f: V \rightarrow \{0,1,\ldots,m{+}n{+}1\}$ which labels the vertices by

$$\begin{split} f(\mathbf{x}) &= 0. \\ f(\mathbf{y}) &= 1. \\ f(\mathbf{a}_i) &= i+1 \text{ for all i from 1 to m.} \\ f(\mathbf{b}_i) &= \mathbf{m}+i+1 \text{ for all i from 1 to n.} \end{split}$$

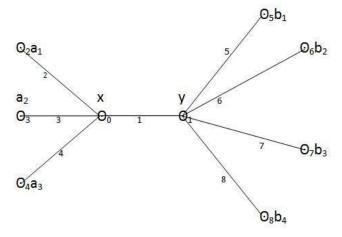
$$I \text{ define a function } f^*: \mathbf{E} \rightarrow \{1, 2, \dots, \mathbf{m}+\mathbf{n}+1\} \text{ which labels the edges by} \\ f^*(\mathbf{x}_i) &= \max \text{ of } \{f(\mathbf{x}), f(\mathbf{a}_i)\} \\ &= \max \text{ of } \{0, i+1\} \\ &= i+1, \text{ for all i from 1 to m.} \\ f^*(\mathbf{y}\mathbf{b}_i) &= \max \text{ of } \{f(\mathbf{y}), f(\mathbf{b}_i)\} \\ &= \max \text{ of } \{1, \mathbf{m}+i+1\} \\ &= \mathbf{m}+i+1, \text{ for all i from 1 to n.} \\ f(\mathbf{x}\mathbf{y}) &= 1. \end{split}$$

gcin of (x) = gcd of
$$\{f^*(xa_1), f^*(xa_2)\}$$

= gcd of $\{2, 3\}$
= 1.
gcin of (y) = gcd of $\{f^*(yb_1), f^*(yb_2)\}$
= gcd of $\{m+2, m+3\}$
= 1.

Hence B(m,n) is a maximal incidence edge prime graph.

Example 2.6 Maximal incidence edge prime labeling of B(3,4) is shown in Figure 6.



Theorem 2.7 Subdivision graph of star $K_{1,n}(Sd(K_{1,n}))$ is a maximal incidence edge prime graph. Proof: Let $x,a_1,a_2,...,a_n$, $b_1,b_2,...,b_n$ be the vertices of the graph. Then $|V(Sd(K_{1,n}))| = 2n+1$ and $|E(Sd(K_{1,n}))| = 2n$.

I define a function $f: V \rightarrow \{0,1,...,2n\}$ which labels the vertices by f(x) = 0. $f(a_i) = 2i-1$ for all i from 1 to n. $f(b_i) = 2i$ for all i from 1 to n. I define a function $f^*: E \rightarrow \{1,2,...,2n\}$ which labels the edges by $f^*(xa_i) = Max$ of $\{f(x), f(a_i)\}$

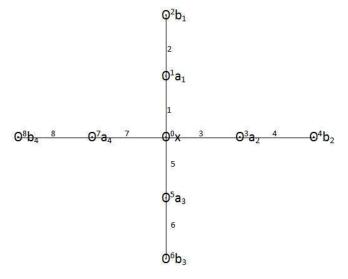
$$f'(xa_i) = Max \text{ of } \{I(x), I(a_i)\}$$

= Max of $\{0, 2i-1\}$
= 2i-1, for all i from 1 to n.
$$f^*(a_ib_i) = Max \text{ of } \{f(a_i), f(b_i)\}$$

= Max of $\{2i-1, 2i\}$
= 2i, for all i from 1 to n.
gcin of (a_i) = gcd of $\{f^*(xa_i), f^*(a_ib_i)\}$
= 1, for all i from 1 to n.
gcin of (x) = gcd of $\{f^*(xa_1), f^*(xa_2)\}$
= gcd of $\{1, 3\}$
= 1

Hence $Sd(K_{1,n})$ is a maximal incidence edge prime graph.

Example 2.7 Maximal incidence edge prime labeling of $Sd(K_{1,4})$ is shown in Figure 7.



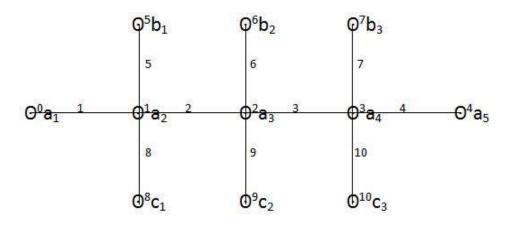
Theorem 2.8 Twig graph $T_w(n)$ is a maximal incidence edge prime graph. Proof: Let $a_1, a_2, ..., a_n, b_1, b_2, ..., b_{n-2}, c_1, c_2, ..., c_{n-2}$, be the vertices of the graph. Then $|V(T_w(n))| = 3n-4$ and $|E(T_w(n))| = 3n-5$. I define a function $f: V \rightarrow \{0, 1, ..., 3n-5\}$ which labels the vertices by

 $f(a_i) = i-1$ for all i from 1 to n. $f(b_i) = n+i-1$, for all i from 1 to n-2. $f(c_i) = 2n-3+I$, for all i from 1 to n-2. I define a function $f^*: E \rightarrow \{1, 2, \dots, 3n-5\}$ which labels the edges by $f^{*}(a_{i}a_{i+1})$ = Max of $\{f(a_i), f(a_{i+1})\}$ = Max of $\{i-1, i\}$ = i , for all i from 1 to n-1. $f^{*}(a_{i+1}b_{i})$ = Max of $\{f(a_{i+1}), f(b_i)\}$ = Max of $\{i, n+i-1\}$ = n+i-1, for all i from 1 to n-2. $f^{*}(a_{i+1}c_{i})$ = Max of $\{f(a_{i+1}), f(c_i)\}$ = Max of {i, 2n-3+i} = 2n-3+i, for all i from 1 to n-2. gcin of $(a_{i+1}) = \text{gcd of } \{f^*(a_i a_{i+1}), f^*(a_{i+1} a_{i+2})\}$ = gcd of {i,i+1} = 1, for all i from 1 to n-2.

Hence $T_w(n)$ is a maximal incidence edge prime graph.

Theorem 2.9 Sum of the edge values is equal to sum of the vertex values in a circuit less maximal incidence prime graph.

Proof : Let G be the graph with n vertices. Since G is a tree, it has only n-1 edges. Labels of the vertices are 0,1,...,n-1 and the labels of the edges are 1,2,...,n. Hence the theorem. Example 2.8 Maximal incidence edge prime labeling of $T_w(5)$ is shown in Figure 8.



3. CONCLUSION

In this paper I introduced a new labeling and proved that some connected circuit less graphs are maximal incidence edge prime graphs. Further I proved a general theorem on connected circuit less maximal incidence prime graphs. To explore some new maximal incidence edge prime graphs is an open problem

REFERENCES

- [1] Apostol. Tom M, Introduction to Analytic Number Theory, Narosa, (1998).
- [2] Harary F, Graph Theory, Addison-Wesley, Reading, Mass, (1972
- [3] Joseph A Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics(2015), #DS6,Pages 1 389.
- [4] Sunoj B S, Labeling Problems in Graph Theory, PhD Thesis, University of Kerala 2019.
- [5] Sunoj B S, Mathew Varkey T K, "Square Sum Prime Labeling of Some Path Related Graphs", International Journal of Application or Innovation in Engineering & Management, Vol. 6, Issue 7, July 2017, pp 25-28.
- [6] Sunoj B S, Mathew Varkey T K, "Square Difference Prime Labeling of Some Cycle Related Graphs", International Journal of Computational Engineering Research, Vol. 7, Issue 11, November 2017, pp 22-25.