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A representation   for   the entries of the   inverse of general tridiagonal   matrices is based 
on the determinants of their principal submatrices. It enables us to introduce, through 
the linear recurrence relations satisfied by such determinants, a simple algorithm for the 
entries of the inverse of any tridiagonal nonsingular matrix, reduced as well as unreduced. 
The numerical approach is preserved here, without invoking the   symbolic computation. 
For tridiagonal diagonally dominant matrices, a scaling transformation on the recurrences 
allows us to give another algorithm to avoid overflow and underflo. 

 
  

 

1. Introduction 
 

Let T = {ai, bi, ci }  (1 ≤ i ≤n) be  an  n ×n  tridiagonal  nonsingular  matrix,  with  a1  =cn =0,  where  the      b{i    } are  the 

coefficients of the principal diagonal  and the{ai}, {ci  }are those of  the lower  and  upper  subdiagonals, respectively. Algorithms 
for the inversion of such matrices are frequently used. There are efficient packages for the numerical inversion of matrices 
based on Gaussian algorithms, with pivoting  strategies,  and for  solving  linear  systems by using  the  Neville elimination, 
see e.g. [1]. But they require a great amount of memory and greater  run times than other  specific  algorithms. Concerning 
the abundant literature about such simpler  algorithms  for  the inversion  of  tridiagonal  matrices,  we can  refer  to  [2–4], 
for example. In general, these specialized algorithms are applicable only in the case of tridiagonal unreduced matrices. 
Frequently, reduced matrices have been avoided because if an entry on the subdiagonals is null, then the routine can be 
applied in separate blocks. Indeed, just consider a scenario of tridiagonal strongly reduced matrices, which have numerous 
null entries in the subdiagonals. Therefore, complexity of such a method of inversion becomes significant. Numerical 
techniques have also been applied on linear systems with block tridiagonal matrices, see e.g. [5,6]. 

A first complete analysis on the inversion of tridiagonal nonsingular matrices, without imposing any condition on the 
coefficients, was introduced in [7]. Nevertheless, the resulting numerical algorithm breaks down when any (left or right) 
principal submatrix is singular. The symbolic computation recently established in this subject, see e.g. [8,9], overcomes 
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Tj−1 

det T · det   (j)
 

n−j 

n−M 

n n−1   n 

difficulties by considering symbolic parameters, which are adequately replaced in a posterior step of the algorithm. The 
computational complexity of the algorithms given in [7–9] is O(n2). 

In the applied domain, the numerical approach is currently  more spread  out  and usable than  the symbolic  one.  Thus 
we try to  go on with  the numerical line from [7], by introducing a simple algorithm to obtain the entries of the inverse of 
any tridiagonal nonsingular matrix. There are some compact representations for the entries of the inverse of tridiagonal 
nonsingular matrices, special as well as general, see e.g. [10,11]. We propose a numerical algorithm by taking advantage of 
the representation based on the determinants of proper principal submatrices, see e.g. [9], 

(−1)i+j i
 

−1 

det T · det 
ak det T 

(i) 
n−i 

 
if i > j, 

(T    )ij = k=j+1 (1) 
j−1 

(−1)i+ 
j 

 
 
 

k=i 

c 
k    Ti−1 

 
det T 

if i ≤ j. 

The submatrix Ti−1 is the left principal one of order i − 1. The submatrix T(j) is the right principal one of order n − j, which 
n−j (n) 

begins in the (j + 1)-th row and column and finishes in the n-th row and column. We define here det T0     = det T0 = 1. 
Representation (1) for the entries of the inverse of tridiagonal nonsingular matrices is a particular case of the closed 
representation for inverses of nonsingular Hessenberg matrices, see e.g. [12].  We can also obtain Expression (1)  by using 
the companion decomposition, recently introduced in [13], on any tridiagonal nonsingular matrix T . 

If in addition T is a symmetric matrix, then its inverse matrix is also a symmetric one, and its entries have the simpler 
representation, 

 
(T −1)ij 

 
= (T −1)ji 

 
= (−1)M+m 

  M 

 
k=m+1 

 

ak 

Tm−1 

det T ·   det (M)
 
, (2) 

det T 

with M = max{i, j}, m = min{i, j}. 
The complexity  for the  inversion of tridiagonal  nonsingular  matrices  is related to the obtainment of the determinants 

of all their principal submatrices. For a fast computation we have at our disposal the second order linear difference 
equations satisfied by such determinants; see also [14]. The linear recurrence relation for determinants of the left principal 
submatrices, with initial conditions det T1  = b1, det T2   = b2b1  − a2c1, is 

det Tk+2   = bk+2 det Tk+1  − ak+2ck+1  det Tk, (1 ≤ k ≤ n − 2) . (3) 

For determinants of the right principal submatrices, the recurrence relation for 1 ≤ k ≤ n − 2, with initial conditions 

det T(n−1) = b , det T(n−2) = b b  − c 
1 2 

n−1an, is 

det T(n−k−2) = b det T(n−k−1) − c a det T(n−k). (4) 
k+2 n−k−1 k+1 n−k−1   n−k k 

Just consider as we can directly obtain a particular entry of the inverse with O(n) complexity. Although, overflow or 
underflow can appear in further computation of such recurrences. Thus, our algorithm works for values of the recurrences 
into the usage range.  For  example,  in  some diagonally dominant  matrices, i.|e.  |b≥i     | ai|+|ci  |, the solutions  of the recurrences 
grow (or reduce) quickly in magnitude. Therefore other methods should be introduced, such as scaling transformations on 
the recurrences. We handle these difficulties by considering another algorithm. 

The material of this paper is organized as follows. In Section 2, after analyzing difficulties of some current specialized 
numerical algorithms for the inversion of tridiagonal matrices, [7,9], we point out the features of the algorithm detailed in 
Appendix A. This algorithm permits us to compute the inverse of any tridiagonal nonsingular matrix of finite order. As an 
illustration, graphical comparisons of its run times with respect to the built-in function inv() of the Matlab ⃝R  package are 
given in Fig. 1. In Section 2.2 we check the algorithm of Appendix A on some current examples of tridiagonal matrices. As it 
was pointed out previously, some difficulties related to overflow and underflow appear in the inversion of various tridiagonal 
diagonally dominant matrices. We manage these difficulties by introducing in Section 2.3 scaling transformations in the 
linear recurrences involved. Therefore, an equivalent recursive algorithm is detailed in Appendix B. It permits us to avoid 
overflow and underflow. To check the complexity of the proposed  algorithm from Appendix B  with  respect to those given 
in [7,9], a graphical comparison for the mean elapsed time in the inversion of some diagonally dominant matrices is finally 
provided. 

 
2. Inversion of general tridiagonal matrices 

 
 Algorithms of inversion in the general case 

 
An advance on specialized numerical algorithms for the inversion of general tridiagonal matrices was provided in [7], 

beyond the classical method using four vectors on unreduced matrices; see e.g. [9, Section 4.1]. This algorithm permits us to 
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cover the strictly nonsingular matrices, [13]; i.e. tridiagonal nonsingular matrices without singular principal submatrices. 
The new difficulty was the location in denominators of the involved formulae of null determinants of some principal 
submatrices. 

We analyze this difficulty using  an equivalent notation based on determinants. Thus, in [7] two vectors, z⃗, y with entries 
z    =  det T , y =   det T

(j−1)  
,  were  introduced.  There  is  no  difficulty  with  the  principal  submatrices,  bu⃗t  overflow  and 

i i      j n−j+1 

underflow should be considered. 
The diagonal entries of the inverse matrix, φj,j, were computed as 

φj,j = 1 det det   (j)
 

  n−j , (5) b − a c j−2 − a c   j+2 

j j j−1 z j+1  j 

j−1 yj+1 

det T 

because the resulting expression in the denominator, 

b det T det T(j) − a c det T det T 
(j) − a c det T det T(j+1) , j j−1 n−j j  j−1 j−2 n−j j+1 j j−1 n−j−1 

is simply the expansion of the determinant of T by its j-th row. The off-diagonal entries of the same column were computed 
in a recursive way, using the diagonal entries; see [7, Eqs. (4)–(5)]. For example Eq. (4) from [7] yields, 

zi−1 
i z    i+1,j 

det Ti−1 
i det Ti i+1,j if i < j, 

φi,j = i 

−a    i+1 φ = −a det 
(i) T
n−i  φ −1, if i > j. 

 

(6) 

i y    i−1,j i     
det T(i−1) 

n  i 

It is clear that the algorithm breaks down if any principal submatrix of T is singular. 
Another algorithm recently given in [9,  Algorithm  4.1], carries the  same difficulty with  principal  submatrices. It is initiated 

by building in a recursive way two vectors, ϕ⃗ , θ⃗ , with entries, 

ϕ= − c 
det Ti−1 , 

i det T 
det (i) T (7) 

θ= −i a n−i     . 
det T(i−1) 

n  i 

Then, the diagonal and the off-diagonal entries of the inverse were computed with expressions equivalent to (5)–(6), 
respectively. Besides a minor flop count, the principal advantage of Algorithm 4.1 from [9] with respect to the one given 
in [7, Section 2], is that expressions (7) permit us to control overflow and underflow in the inversion of some tridiagonal 
strictly nonsingular matrices. Algorithm 4.1 from [9] also breaks down if any principal submatrix is singular. To overcome 
these difficulties the symbolic computation, already introduced in [8], was applied. 

In summary, the lack of success of previous specialized numerical algorithms for the inversion of general tridiagonal 
matrices is related to the location of null  denominators in the involved formulae.  Thus,  if  we handle expressions  (1)–(4) 
for an algorithm of inversion, we note that this drawback does not appear, because the only involved denominator is the 
determinant of a tridiagonal nonsingular matrix. 

A simple non Gaussian algorithm to compute the inverse of any tridiagonal nonsingular matrix is proposed in Appendix A. 
It represents a continuation of the results from [7], because its steps 2–3 are equivalent to those first steps of the method 
given in [7]. The determinants are evaluated with the vector solutions of the recurrences (3)–(4). 

Our algorithm does not break down when any principal submatrix is singular. In steps 4–5 the off-diagonal entries of the 
inverse matrix are directly computed with the aid of Expression (1). 

In the reduced case, and for matrices with a large order n, products of the ai or the ci that appear in (1) must be considered. 
Thus, we build recursively two vectors, prod a and prod c, to avoid the unnecessary computation as well as the repetition of 

large products. It is important for the efficacy of the algorithm. As for the computations of (T −1)i,j  in (1), we can make the 
following substitutions, 

 

(−1) 

 
i+j 

i  

ak = 
k=j+1 

prod a(i) 

prod a(j) 

 
(i > j) ; (−1)

i+j
 

 j−1  

ck 
= 

k=i 

prod c(j) 

prod c(i) 

 
(i < j) . 

The introduction of the previous ratios for both vectors prod a and prod c requires us to handle the null entries ai and ci 

in the reduced case. For this task, we introduce the input vectors asign a; for the positions of rows with null entries in the 
lower subdiagonal, and asign c; for the positions of columns with null entries in the upper subdiagonal, respectively. Thus, 
we avoid the computation of the (null) entries with null products in the denominators. 

When an entry ai  or ci  of T  is a null entry, then this tridiagonal nonsingular matrix is a 2 × 2 block matrix, with a null 
block element. It is well known that its inverse is also a 2 × 2 block one, with the same null block element. Just consider as 

i j 

i 
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Fig. 1.   Mean value of the elapsed time, 150 trials, in the computations of the inverses. 

 
these null entries are not evaluated by our algorithm. We also take advantage of this fact in the step 1, when initializing T −1

 

as the null matrix of size n. 
Therefore, the computational complexity decreases when the matrix T is a strongly reduced matrix; with many null 

entries ai   or ci. Our algorithm is especially useful  in this scenario, because the unnecessary computation of almost all  the 
null entries of the inverse is avoided. On the other hand, for unreduced matrices the n2   entries of the inverse are evaluated 
by considering the inputs asign a= [1], asign c = [1 ]. For unreduced tridiagonal matrices the computational complexity is 
O(n2), with 4n2   O+(n) flop counts. 

We introduce in Fig. 1 graphics for the general as well as the unreduced case. To check the computational complexity for 
general tridiagonal matrices, the mean elapsed time of the algorithm of Appendix A is compared with respect to the built-in 
function inv() of the Matlab ⃝R  package. Here, the tridiagonal matrices are of order  n with 75 ≤ n  ≤500, in steps of 25 units, 
and  take  random  values  from[5−,  5  . ]As  we  expected,  the  complexity  of  our  algorithm  decreases  in  the  general  case  with 
respect to the unreduced one. 

 
 Current  examples  of  tridiagonal  matrices 

 

Tridiagonal nonsymmetric matrices. We begin with tridiagonal nonsymmetric matrices (type 1 of the test matrices from [15]) 
with random entries from the interval [−1; 1]. We have checked matrices of this type up to n = 1000, and the algorithm 
works correctly in the usage range. An illustrative numerical situation, with n  = 7, is  given.  We consider the unreduced 
case; asign a = [1], asign c = [1]. 

>> T = 
0.6294 0.8116 0 0 0 0 0 

-0.7460 0.2647 0.8268 0 0 0 0 
0 -0.8049 0.0938 -0.4430 0 0 0 
0 0 0.9150 -0.6848 0.9298 0 0 
0 0 0 0.9412 -0.0292 0.9143 0 
0 0 0 0 0.6006 -0.1565 -0.7162 
0 0 0 0 0 0.8315 0.5844 

 
>> T^(-1) = 

0.8709 -0.6057 0.6789 0.4778 0.6671 -0.7072 -0.8667 
0.5568 0.4698 -0.5265 -0.3705 -0.5174 0.5484 0.6721 
0.6075 0.5125 0.7811 0.5497 0.7676 -0.8137 -0.9972 

-0.8830 -0.7450 -1.1354 0.7896 1.1026 -1.1687 -1.4323 
-1.2482 -1.0531 -1.6049 1.1161 0.0567 -0.0601 -0.0736 
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0.8691 0.7333 1.1175 -0.7772 -0.0395 1.2012 1.4721 
-1.2366  -1.0433  -1.5900 1.1058 0.0561  -1.7091  -0.3834 

 
Tridiagonal reduced matrices. When the nonsingular matrices are also reduced matrices the algorithm works correctly. All 
numerical trials produce adequate outputs into the usage range. It also works in the limit of two-band triangular matrices. 
When the number of zeros in the subdiagonal  increases, the  complexity  of the algorithm decreases.  A numerical  situation 
is provided with a random reduced matrix of order n = 7. Here, we take asign a = [2, 4, 6, 7], asign c = [3, 5]. 

>> T = 
 
 
 
 
 
 

>> T^(-1) 
 
 
 
 
 
 
 

Tridiagonal symmetric matrices. For the computation of the inverse of tridiagonal symmetric matrices, step 5 of the algorithm 
of Appendix A can be suppressed, because pairs of symmetric entries of the inverse matrix can be evaluated at step 4. When 
a tridiagonal symmetric matrix is also a reduced one, both the tridiagonal matrix and its inverse have the same diagonal 
block structure. Hence, the computation of the inverse matrix is simple. For these type of matrices a numerical situation 
handled with our algorithm, with asign a = asign c = [2, 3, 5, 7], is given. 

>> T = 
-0.9547 0 0 0 0 0 0 

0 -1.9182 0 0 0 0 0 
0 0 0.6465 -2.0000 0 0 0 
0 0 -2.0000 -1.2752 0 0 0 
0 0 0 0 0.5087 -1.0000 0 
0 0 0 0 -1.0000 1.3667 0 
0 0 0 0 0 0 -1.5909 

>> T^(-1) = 
-1.0474 0 0 0 0 0 0 

0 -0.5213 0 0 0 0 0 
0 0 0.2643 -0.4146 0 0 0 
0 0 -0.4146 -0.1340 0 0 0 
0 0 0 0 -4.4845 -3.2813 0 
0 0 0 0 -3.2813 -1.6692 0 
0 0 0 0 0 0 -0.6286 

 
Tridiagonal nonsingular matrices with singular principal submatrices. If a tridiagonal nonsingular matrix is not a strictly 
nonsingular one, some principal submatrices are singular. Then, new lines of zeros appear in the inverse matrix [15]. Our 
algorithm does not avoid the unnecessary evaluation of such zeros, although it can be improved. We give a numerical 
example for the inverse of a symmetric Toeplitz matrix of order n = 8 (type 8 of the test matrices from [15]) with 
bi = 0, ai = ci = 1. We consider the unreduced case; asign a = [1], asign c = [1]. 

>> T^(-1) = 
0 1 0 -1 0 1 0 -1 
1 0 0 0 0 0 0 0 
0 0 0 1 0 -1 0 1 

-1 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 -1 

 

0.9004 -1.0000 0 0  0  0  0 
0 
0 
0 

0.5310 0 
1.0000  -0.0205 

0 0 

0 
-1.0000 
0.4187 

 0 
0 
0 

 0 
0 
0 

 0 
0 
0 

0 0 0 1.0000 0.3594 -1.0000  0 
0 0 0 0  0 -0.7620 -1.0000 
0 0 0 0  0  0 0.9195 

=          

1.1106 2.0916 0 0  0  0 0 
0 1.8832 0 0  0  0 0 
0 91.8653 -48.7805 -116.5046  0  0 0 
0 0 0 2.3883  0  0 0 
0 0 0 -6.6454 2.7824 -3.6515 -3.9711 
0 0 0 0  0 -1.3123 -1.4272 
0 0 0 0  0  0 1.0875 
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k

n−k 

= − ; = − . 

·

 

1 0 -1 0 1 0 0 0 
0 0 0 0 0 0 0 1 

-1 0 1 0 -1 0 1 0 
 

Tridiagonal strictly diagonally dominant matrices. Finally, the strictly diagonally dominant matrices are  tested. In particular, 
we check two Toeplitz matrices. Note as for tridiagonal Toeplitz-like matrices the solutions of the recurrences (3)–(4) are 

the same; i.e. det Tk    =  det T(n−k). First we consider here the inversion of symmetric Toeplitz matrices of type 7 from [15], 
with  bi  =  108, ai  =  ci   =  1.  For  matrices  of  order  n <  39  the  algorithm  works  correctly.  The  algorithm  overflows  during 
the computation of the determinants, when the order increases in such a way that n ≥ 39. We also consider another 
nonsymmetric Toeplitz matrix, with bi = 10−3, ai = −10−4 ci = 10−5. For matrices of order n < 67 the algorithm works 
correctly. Nevertheless, when n ≥ 67 the algorithm underflows. 

 
 Algorithm  for  avoiding  overflow and  underflow in  diagonally dominant  matrices 

 
All the entries on the main diagonal of any tridiagonal diagonally dominant matrix are non null entries, when such matrix 

is nonsingular. For sufficiently large order n, it will enables us to avoid overflow and underflow of the recurrences and large 
products involved in the computation of the inverses of such matrices. To reach this goal, we introduce the following scaling 
transformations to obtain the solutions from the linear recurrences (3) and (4), respectively, 

 
det Tk−1 = 

k−1 

 

i=1 

 
SLk−1; det T(k)  = 

bi 

n 
 

i=k+1 
bi

 

 
SRn−k. (8) 

The transformed recurrences, with initial conditions SL0  = SL1  = 1; SR0   = SR1   = 1, are, 
ak+2ck+1 an−kcn−k−1 

SLk+2 SLk+1 SLk SRk+2 SRk+1 SRk (9) 
bk+2bk+1 bn−kbn−k−1 

Note that, for strictly diagonally dominant matrices, when solutions of the linear recurrences (3) and (4) grow (or reduce) 
quickly in magnitude, although the transformed recurrences (8) and (9) have a slow variation from the given initial 
conditions. This aspect has a main role when handling overflow and underflow using such recurrences. After the introduction 
of the preceding transformations, the representation (1) for the entries of the inverse matrix yields 

i 

 
1) 

 
 

( 

(T −1)ij = 

i+j ak SLj−1 · SRn−i if i > j, 

 
k=j+1       

bk 
bj      SLn 

 
≤ SLi−1  · SRn−j 

 
 
 

(10) 

(−1)  
i+j 

j−1  c 
bk bj · SLn 

if i j. 
k=i k 

FAoprpesnudffiixciAenttolythlaergnewn,reEpxrperseesnsitoantio(n10(1) 0d)oaensdntohte seoxlvame pthleesoef  tdyipffeic7ultfrieosm.  I[n15p]aristicuhleacrk, ewd.eWaedanpottethtehaatlgthoreitahlgmorfirtohm 
underflows, because the denominators involved in the products from (10) are bigger. Then, large products must also be 
avoided. 

A recursive relation between two consecutive entries in the same row of the inverse matrix can be derived from (10), 

T −1 
— 

aj+1 · SLj−1      ( −1) 
 

if   > (11) , 
( )ij = c b ··SR    

T
 i j+1 i j 

j−1 
b 

,
·SLSR 

n−j (T −1 ) 
 

i,j−1 if i < j. 
j n−j+1 

Indeed, Expression (10) can be considered as a direct evaluation for the diagonal entries of the inverse and it does not bring 
problems, because in this scenario all terms of the denominators are non-null terms. Also, large products are not involved. 
That is, after the evaluation of the main diagonal, we can compute all the entries using a row-by-row procedure, via the 
recursive relations (11). Hence, the difficulties associated with overflow and underflow in the recurrences and the large 
products are controlled. 

The preceding method is introduced in the alternative algorithm of Appendix B for the inversion of the tridiagonal 
diagonally dominant matrices. This algorithm gives adequate outputs even on matrices of a large order n. However, the 
algorithm of the Appendix A goes beyond of the usage range. 

We check the algorithm of Appendix  B with the numerical tests on  strictly diagonally dominant  matrices  given in 
Section 2.2. Thus, for symmetric matrices of type 7 from [15], the algorithm works correctly; overflow is avoided for n > 39. 
Also, for nonsymmetric Toeplitz matrices with bi = 10−3, ai = − 10−4,  and  ci  =10−5,  the  algorithm  of  Appendix  B  does  not 
underflow for n > 67. Other tested strictly diagonally dominant matrices, where the algorithm of Appendix A overflows or 
underflows, have also given adequate outputs. A numerical illustration is given, with n = 7, and the vectors asign a = [2], 
asign c = [4, 6], 

−

− 
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Fig. 2. Comparison of the mean value, in Log scale, for the elapsed times, 150 trials, in the computation of the  inverses  of some  tridiagonal  diagonally 
dominant matrices. 

 
>> T =         

 2 1 0 0 0 0 0  

 0 4 1 0 0 0 0  

 0 -1 6 0 0 0 0  

 0 0 -2 8 2 0 0  

 0 0 0 -2 10 0 0  

 0 0 0 0 2 12 4  

 0 0 0 0 0 6 14  

>> T^(-1) =        

 0.5000 -0.1200 0.0200  0 0 0 0 
 0 0.2400 -0.0400  0 0 0 0 
 0 0.0400 0.1600  0 0 0 0 
 0 0.0095 0.0381 0.1190 -0.0238 0 0 
 0 0.0019 0.0076 0.0238 0.0952 0 0 
 0 -0.0004 -0.0015 -0.0046 -0.0185 0.0972 -0.0278 
 0 0.0002 0.0006 0.0020 0.0079 -0.0417 0.0833 

The computational complexity of our proposed algorithms depends on the subdiagonal entries of the involved tridiagonal 
matrix. For the unreduced case both algorithms requires 4n2   O+(n) flop counts. 

As the diagonally dominant matrices are also strictly nonsingular, we can compare the computational complexity of the 
algorithm of Appendix B with those given in [7,9]. For this task we handle random tridiagonal nonsingular matrices with 
non-null entries bi     = 10−3, ai = − 10−4    ·randi( [−5; 5] ), and ci =10−4      ·randi( [−5 ;5 ]), where randi( [−5 ;5]) is a random 
integer from the given closed interval. 

In Fig. 2 a comparison of the mean elapsed times, on 150 trials, is provided. In each trial, random matrices are taken in 
an increasing order, from n =  40 to n = 300, in steps of 10 units. For a finer comparison, the mean values are given in a 
Log scale. Outcomes show the robustness of the algorithms under study. Nevertheless, the algorithm from [7, Section 2], 
underflows when n  1≥10. As we expected, the algorithm from [9] and the one proposed in Appendix B avoid underflow. 

Algorithm 4.1 from [9] obtains shorter elapsed times in the unreduced scenario. Although for general reduced diagonally 
dominant matrices, the algorithm of Appendix B has a minor complexity, as it can be observed in Fig. 2. Therefore, a 
combination of both numerical algorithms could be of interest for the inversion of tridiagonal strictly nonsingular matrices. 
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Appendix A. A numerical algorithm of inversion 
 

Input: 

• Order n and the components {ai, bi, ci} of the tridiagonal matrix T . 

ISSN NO : 1869-9391

PAGE NO: 210

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 3, 2024

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



10 
 

• A vector with the positions of rows with null entries in the lower subdiagonal, (asign a). 
• The total number of null entries in the lower subdiagonal, (numbera). 
• A vector with the positions of columns with null entries in the upper subdiagonal, (asign c). 
• The total number of null entries in the upper subdiagonal, (numberc). 

(For unreduced matrices we take number = 1 and asign = 1 for both subdiagonals). 
Output: T −1 the inverse of the tridiagonal matrix T . 

1. Initialize T −1 as the null matrix of size n. 
2. Set the initial conditions. For k = 3 : n + 1; build the two vectors of principal determinants. 
3. For i = 1 : n; evaluate (T −1)ii, the entries of the main diagonal. 
4. Evaluate the entries of the lower triangle of T −1. 

(a) prod a(1) = 1. For k = 2:asign a(1) − 1; prod a(k) = −ak ∗ prod a(k − 1). 
For j = 1 : k − 1; evaluate (T −1)k,j. 

(b) For m = 2:numbera; prod a(asign a(m − 1)) = 1. 
For k = asign a(m − 1) + 1:asign a(m) − 1: prod a(k) = −ak  ∗ prod a(k − 1); 
For j = asign a(m − 1) : k − 1; evaluate (T −1)k,j. 

(c) prod a(asign a(numbera)) = 1; 
For k = asign a(numbera) + 1 : n; prod a(k) = −ak ∗ prod a(k − 1); 
For j = asign a(numbera) : k− 1; evaluate (T −1)k,j. 

5. Evaluate the entries of the upper triangle of T −1. 
(a) prod c(1) = 1. For k = 2:asign c(1) − 1; prod c(k) = −ck−1∗ prod c(k − 1). 

For i = 1 : k − 1; evaluate (T −1)i,k. 
(b) For m = 2 : numberc; prod c(asign c(m − 1)) = 1. 

For k = asign c(m − 1) + 1:asign c(m) − 1: prod c(k) = −ck−1 ∗ prod c(k − 1); 
For i = asign c(m − 1) : k − 1; evaluate (T −1)i,k. 

(c) prod c(asign c(numberc)) = 1; 
For k = asign c(numberc) + 1 : n; prod c(k) = −ck−1 ∗ prod c(k − 1); 
For i = asign c(numberc) : k − 1; evaluate (T −1)i,k. 

 
Appendix B.   A numerical algorithm for the inversion of tridiagonal diagonally dominant matrices 

 
Input: 

• Order n and the components {ai, bi, ci} of the tridiagonal matrix T . 
• A vector with the positions of rows with null entries in the lower subdiagonal, (asign a). 
• The total number of null entries in the lower subdiagonal, (numbera).ss 
• A vector with the positions of columns with null entries in the upper subdiagonal, (asign c). 
• The total number of null entries in the upper subdiagonal, (numberc). 

(For unreduced matrices we take number = 1 and asign = 1 for both subdiagonals). 
Output: T −1 the inverse of the tridiagonal diagonally dominant matrix T . 

1. Initialize T −1 as the null matrix of size n. 
2. Set the initial conditions. For k = 3 : n + 1; build the two scaling vectors, (9). 
3. For i = 1 : n; evaluate (T −1)ii, the entries of the main diagonal, Eq. (10). 
4. Evaluate the entries of the lower triangle of T −1, relation (11). 

(a) For k = 2: asign a(1) − 1; 
For j = k − 1 : −1 : 1; evaluate (T 

(b) For m = 2 : numbera; 

−1) k,j. 

For k = asign a(m − 1) + 1: asign a(m) − 1 : 
For j = k − 1 : −1: asign a(m − 1); evaluate (T −1)k,j. 

(c) For k = asign a(numbera) + 1 : n; 
For j = k − 1 : −1: asign a(numbera); evaluate (T 

 
−1 

k,j 

5. Evaluate the entries of the upper triangle of T −1, relation (11). 
(a) For k = 2: asign c(1) − 1; 

For j = k : asignc(1) − 1; evaluate (T 
(b) For m = 2 : numberc; 

−1) k−1,j. 

For k = asign c(m − 1) + 1: asign c(m) − 1; 
For j = k: asign c(m − 1); evaluate (T −1)k−1,j. 

(c) For k = asign c(numberc) + 1 : n; 
For j = k : n; evaluate (T −1)k−1,j. 

) .
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