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ABSTRACT 

 1 

The Western Ghats of India, a UNESCO World Heritage site and one of the world‘s eight 2 

‗hottest hotspots‘ of biological diversity, are recognized for their highly productive and 3 

characteristic montane forest ecosystems. High-resolution and geographically large coverage 4 

mapping of forest carbon stocks is valuable to adapt and effectively implement large-scale 5 

forest management strategies. Previous approaches to producing maps of carbon stocks at a 6 

regional scale have considered limited areal extant and have relied on knowledge-based 7 

stratification and regression of plot-level measurements and low-resolution forest vegetation 8 

maps derived from active or passive remote sensing data. With an overall aim of near-future 9 

applicability to the entire Western Ghats of India, this study investigated the application of a 10 

multi-sensor remote sensing technique to estimate aboveground carbon stocks (AGCS) at 11 

high spatial resolution in Kudremukh National Park in the Western Ghats. Implementing a 12 

feature-fusion-based integration of satellite-based LiDAR (GEDI), SAR (Sentinel-1), 13 

multispectral (Sentinel-2) and DEM (SRTM) datasets in a Randorm Forests machine learning 14 

framework, the study proposes a scalable method to map AGB densities and derive carbon 15 

stock estimates. The maps are validated using hold-out field inventory data. The study reveals 16 

that AGB ranges from 13 to 300 Mg/ha, with a mean of 93.69 Mg/ha, primarily concentrated 17 

in grasslands (below 1000 meters). The aboveground biomass density point cloud from GEDI 18 

LiDAR data, modelled and upscaled using multi-sensor remote sensing datasets, reveals 19 

biomass density patterns and tree species dynamics conforming to the regional patterns. The 20 
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findings underscore the importance of elevation and forest cover type in hosting dominant 21 

portions of AGCS in Kudremukh National Park. This work offers valuable insights into 22 

carbon stock assessment and ecosystem dynamics, benefiting policy decisions related to 23 

climate change mitigation and biodiversity conservation efforts. 24 

 25 

 26 

Keywords: Biomass, Above-Ground Carbon Stocks (AGCS), LiDAR, SAR, Multispectral 27 

data, Machine Learning, Random Forests, Western Ghats, Biodiversity 28 

 29 

1 INTRODUCTION 30 

 31 

Forests are vital as wildlife habitats, clean water, sources of materials and commodities, as 32 

well as carbon sinks.
1
 Carbon storage and sequestration are among the most important 33 

services forest ecosystems provide, which are important factors for climate change mitigation 34 

and adaptation. However, their value is not always adequately recognized, with people often 35 

taking for granted the benefits of the forest ecosystems.
2,3

 Studies have estimated that up to 36 

20% of annual greenhouse gas emissions are caused by the loss of forests due to natural and 37 

anthropogenic disturbances worldwide.
4
 Therefore, accurately estimating carbon levels is 38 

crucial for biodiversity conservation and climate mitigation efforts. Concerns about the 39 

effects of increasing atmospheric carbon dioxide on climate have spurred an international 40 

initiative aimed at reducing forest-related emissions, notably in the tropics, where the bulk of 41 

global deforestation occurs.
5
 The implementation of Reducing Emissions from Deforestation 42 

and Forest Degradation (REDD+) hinges on the ability to monitor forest carbon stock and 43 

dynamics across spatial scales, ranging from entire countries down to the localized scales 44 

where deforestation and degradation processes occur.
6
  45 

 46 

The Western Ghats is a global biodiversity hotspot for numeric endemic species and  47 

a wide variety of habitats including as streams, wet evergreen forests, grasslands, scrub 48 

forests, savannas, peat bogs, Myristica swamps, and man-made habitats.
7,8

 It serves as a 49 

significant carbon reservoir, actively sequestering atmospheric CO₂ and mitigating climate 50 

change. Encompassing 36% of the protected areas in India, the Western Ghats harbour 51 

diverse forest ecosystems, including tropical rainforests, evergreen, and deciduous forests, 52 

with an estimated vegetation carbon stock of 1.23 Gt (billion gigagrams).
9
 Functionally 53 

relevant and high-resolution mapping of the carbon sequestration potential of the Western 54 

Ghats is crucial for understanding the localized patterns of climate change, water, and food 55 

security in peninsular India.
9,10

 The Kudremukh National Park (KNP), one of the UNESCO 56 

World Heritage sites in Western Ghats,
11

 is considered representative of the gross ecological 57 

and biodiversity characteristics of the Western Ghats. It is an indicator of substantial tropical 58 

biological diversity with a high rate of endemism and is the region of the origin of three 59 

major rivers - Tunga, Bhadra, and Netravathi rivers. The distinctive evergreen ecosystem 60 

within the park plays a crucial role in executing various regulatory functions, particularly 61 

regarding biogeochemical cycles. This unique ecological system efficiently manages and 62 

influences the flow of essential elements, demonstrating its significance in maintaining 63 

ecological balance and sustainability. The records of the forest department of the Government 64 

of Karnataka
12 

illustrate that the landscape of Kudremukh National Park has undergone 65 

considerable changes during the last four decades. Holding the world‘s largest iron ore 66 

deposits, mining activities were initiated from 1980 identifying mineralized areas of about 67 

500 ha. In the process of establishing the unit, the entire landscape of the area was modified 68 

with a huge township and other infrastructure facilities. The environmental impact 69 

assessment of mining, which was carried out 20 years after the establishment of iron ore 70 
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mining and processing factor, has highlighted several adverse impacts of mining on the local 71 

ecology
13

 and eventually led to the declaration of it a protected national park in 1987 and 72 

banning of mining activities in 2005.
14

  73 

 74 

The forest department, mining authorities, and a number of other corporates involved 75 

in the mining and plantation businesses have carried out extensive plantations using exotic 76 

trees such as Eucalyptus tereticornis, Acacia auriculiformis, Grevillea robusta and Casuarina 77 

equisetifolia. 
12,15

  Nevertheless, Kudremukh National Park structurally is heterogeneous and 78 

has exceptionally high biological diversity. The degree of endemism is very high
16

  in 79 

Kudremukh National Park, which includes Poeciloneuron indicum, Myristica dactyloides, 80 

Litsea floribunda and many other species, and has the characteristics of relics. An accurate 81 

estimation of forest aboveground biomass (AGB) is required to provide the baseline carbon 82 

stocks and quantify the anthropogenic emissions caused by deforestation and forest 83 

degradation in the context of Climate change.
17

 In addition, accurate estimation of forest 84 

AGB density is critical for implementing cost-effective carbon emission mitigation strategies. 85 

The conventional approach of AGB estimation relies on the allometric equations developed 86 

based on limited field sampling of tree structural parameters such as height and diameter at 87 

breast height (DBH).
18,19

 This conventional approach is valuable to a certain extent; however, 88 

it is expensive and time-consuming over a vast forest area, limiting scalability. Furthermore, 89 

field-based inventory and destructive biomass sampling approaches can introduce substantial 90 

sampling and upscaling distortions.
20

  91 

 92 

 Remote sensing data allows large-scale assessments of the forest ecosystem, 93 

structure, and functionality. Various studies have demonstrated the potential of estimating 94 

biomass and other structural metrics of forest stands using data from optical,
21,22

 SAR,
23

 and 95 

LiDAR
24,25,26,27,28

  sensors mounted on ground-based, airborne, and space-borne platforms. A 96 

range of methods, - statistical regressions,
21

 machine learning,
29

 and deep learning,
30,31

 have 97 

also been used for estimating the forest biomass.  While optical imagery proves proficient in 98 

delineating biomass variations, it reaches a point of saturation beyond which it is unable to 99 

discern further biomass fluctuations.
32

 Conversely, LiDAR exhibits promise in generating 100 

AGB density points; however, its sparse distribution of data points renders it inefficient for 101 

comprehensive AGB density mapping across extensive areas due to its inherent limitations.
21

 102 

Even though many studies have adopted integrated or data fusion methods to overcome the 103 

limitations of using a single remote sensing datatype, the forest landscapes that represent the 104 

data extents are often limited in spatial extent, and the forest landscapes are predominantly 105 

homogeneous with similar terrain and ecological conditions across the length and breadth of 106 

imagery coverage.
27,33,34

 Application of these studies to complex mosaics of landscapes like 107 

Western Ghats is very limited. These constraints often limit the generalization or inference of 108 

model suitability for carbon estimations over expansive areas in highly diversified forest 109 

landscapes in tropical countries such as the Western Ghats of India. Except for the global or 110 

biome-level maps of carbon estimates produced from coarse-resolution satellite data,
23,31,35

 111 

there are very limited attempts at assessing the methodological implementations and 112 

application of multi-sensor remote sensing data for AGB estimation over a large area - 113 

encompassing the full range of forest ecosystems and heterogeneity typical of the Western 114 

Ghats of India and thereby serving as operational reference estimations of AGB.
36,37

 115 

Leveraging LiDAR and SAR data addresses saturation concerns, whereas optical imagery 116 

facilitates scaling the data from regional to broader spatial scales. The objective of this study 117 

is to estimate the AGB of a complex and heterogeneous forest landscape of the Western 118 

Ghats of India by fusing optical, SAR, and LiDAR data in a machine-learning 119 

methodological framework. Considering the space-borne LiDAR-based discrete estimates of 120 
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biomass as seed measurements, spatially continuous raster data from SAR and multispectral 121 

satellite data were modelled by implementing a non-parametric ML approach, Random Forest 122 

regression, for the generation of a spatially continuous and high-resolution AGB map that 123 

encompasses the entire Kudremukh National Park of the Western Ghats of India. The AGB 124 

estimates validated against field inventory values demonstrate consistent and reasonably high 125 

accuracy in AGB mapping across varied spatial and ecological contexts.  126 

 

 

 

2 MATERIALS AND METHODS 

2.1 Study Area 127 
 128 

Within the broader context of generating AGB maps covering the entire geographical extent 129 

of the Western Ghats, we have chosen a study site, Kudremukh National Park, which 130 

represents geographical and ecological diversity of Western Ghats. The location map of the 131 

study area is depicted in Figure 1. Kudremukh National Park extends between 75
o
 01‘ to 75

o
 132 

25‘ E longitude and 13
o
 01‘ to 13

o
 29‘ N latitudes; found at an altitude of 1892 m above sea 133 

level, encompassing forests of hilly terrain, in an area of 736.28 km
2
 in the Western Ghats, 134 

India. It includes Tungabhadra State Forest in the Chikkamagaluru Revenue District, the 135 

Naravi reserve forest in the Dakshina Kannada district and the Andar reserve forest in the 136 

Udupi District. The Kudremukh National Park has highland and lowland tropical evergreen 137 

forests, shola, grassland, savannah, and mosaics of mixed semi-evergreen forest and 138 

plantations in the peripheral area (Swamy and Procter, 1994; Krishnamurthy, 2003). The 139 

climate is typically tropical, with annual rainfall ranging from 600 to 800 cm. The maximum 140 

temperature varies from 21
o
C to 34

o
C during April–July, while the minimum temperature 141 

ranges from 12
o
C to 18

o
C between January and May.

15,38 
142 

 143 

The landscape is a mosaic of several unique geographical, ecological, and social 144 

attributes with changing elevations. The central, northern, and eastern parts of the study area 145 

comprise a formation of rolling hills with a mosaic of grasslands and montane evergreen 146 

forests.
39

 The forest formation in the western slopes below 300 m are semi-evergreen in 147 

nature and are influenced by anthropogenic activities. Below 200 m, a mosaic of landscape 148 

element types replaces natural vegetation, with various types of plantations particularly, 149 

Arecanut (Areca catechu) dominating this terrain.
40

 Primary forest species are Myristica 150 

dactyloides, Palaquium ellipticum, Garcinia gummi-gutta, and Poeciloneuron indicum play 151 

crutial role in maintaining forest ecosystem stability and enhansing the provision of forest 152 

ecosystem services.
38

  153 

 154 

 155 
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 156 
Figure 1. Study Area: location and administrative boundary of the Kudremukh National Park, 157 

Western Ghats. 158 

 159 

 160 

2.2 Data Sources 161 

The study used field inventory data and remote sensing data from different sensors. 162 

Aboveground Biomass Density (AGBD) data points from GEDI, a satellite-based LiDAR 163 

sensor, backscattering data from microwave RS satellite, multispectral satellite imagery and 164 

DEM data form the primary RS datasets. Plot inventory data matching acquisition time and 165 

geographical locations of the multi-sensor RS data considered were extracted from the series 166 

of plot inventory data acquisitions carried out periodically under the National Carbon 167 

Sequestration Mission, India. Below is a brief description of the sources of remote sensing 168 

data used. 169 

 170 

2.2.1 Discrete measurements of aboveground biomass density (AGBD) from LiDAR 171 

  172 
The Global Ecosystem Dynamics Investigation (GEDI) was a LiDAR mission launched by 173 

NASA mounted on the International Space Station in 2018. This sensor was specifically 174 

designed to retrieve vegetation structure within a novel, theoretical sampling design that 175 

explicitly quantifies biomass and its uncertainty across various spatial scales.
41,42 

The GEDI 176 

mission collected waveform LiDAR data with a dense sampling rate of ∼25m footprint along 177 

ground tracks paralleling the orbit of the International Space Station (ISS).
43

 It provided 1 km 178 

x 1 km estimates of mean aboveground biomass density (Mg ha
−1

) based on observations 179 

from mission week 19 starting 2019-04-18 to mission week 138 ending on 2021-08-04. The 180 

GEDI L4A Footprint Biomass product converts each high-quality waveform to an AGBD 181 

prediction. The L4B product uses the sample present within the borders of each 1 km cell to 182 

statistically infer mean AGBD.
44

 The mean aboveground biomass density layer of GEDI L4B 183 

product was used in the study. 184 

  185 

2.2.2 Multispectral and SAR Data and the computation of spectral indices 186 
 187 

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 9, 2024

ISSN NO : 1869-9391

PAGE NO: 142

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



6 | P a g e  

 

The study used spatially continuous raster data from satellites - multispectral imagery from 188 

Sentinel-2, SAR imagery from Sentinel-1 and elevation data from SRTM DEM. The cloud-189 

free imagery of Sentinel-2 and the corresponding Sentinel-1 data were procured for the year 190 

2021. The SAR data acquired from the Sentinel-1 are generally provided as Level-1 Ground 191 

Range Detected (GRD) products.
45

 Using the SNAP toolbox provided by the European Space 192 

Agency,
46

 the SAR data were processed for retrieving the geo-referenced backscatter 193 

coefficient (σ°) in decibels (dB). Surface reflectance products from Sentinel-2 L2A images 194 

were composited as the S2 mosaic after the cloud and noise removal.
47,48

  To calculate 195 

topographic indicators SRTM DEM products were used.
49

 Bringing to the desirable spatial 196 

resolution of 10m common in some spectral bands of Sentinel-2 and multiple spatial 197 

resolutions in Sentinel-1, the spatial resolution of the multispectral and SAR data was 198 

resampled to a uniform grid size of 10m. To match point-to-point elevation values, the DEM 199 

product was up-sampled from 30 m to 10m using the nearest neighbourhood approach. The 200 

data sets, and various products and indices generated for the study are listed in Table 1.  201 

 202 

 203 

Table 1. Multi-sensor variables used for Above Ground Biomass modelling. 204 

Sl. 

No. 

Images Features Description 

1 S1 

mosaic 

Backscatter VV Single co-polarisation, vertical 

transmit/vertical receive (in dB) 

VH Dual-band cross-polarisation, vertical 

transmit/horizontal receive (in dB) 

2 S2 

mosaic 

Multispectral 

Bands 

B2* Blue, 490 nm 

B3* Green, 560 nm 

B4* Red, 665 nm 

B5* Red Edge 1/Visible and Near Infrared 

(VNIR), 705 nm 

B6 Red Edge 2/Visible and Near Infrared 

(VNIR), 740 nm 

B7 Red Edge 3/ Visible and Near Infrared 

(VNIR), 783 nm 

B8 Visible and Near Infrared (VNIR), 842 

nm 

B8A Visible and Near Infrared (VNIR), 865 

nm 

B11* Short Wave Infrared (SWIR), 1610 nm 

B12* Short Wave Infrared (SWIR), 2190 nm 

Vegetation 

indices 

RVI* Ratio vegetation index, B8/B4 

DVI Difference vegetation index, B8 − B4 

NDVI* Normalised difference vegetation index, 

(B8 − B4)/(B8 + B4) 

EVI* Enhanced vegetation index, 

2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 

+ 1) 

S2REP Sentinel-2 red-edge position index, 

705 + 35 × [(B4 + B7)/2 − B5] × (B6 − 

B5) 

REIP* Red-edge inflection point index, 
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700 + 40 × [(B4 + B7)/2 − B5]/(B6 − B5) 

SAVI* Soil adjusted vegetation index, 

1.5 × (B8 − B4)/8 × (B8 + B4 + 0.5) 

MTCI* Meris terrestrial chlorophyll index, 

(B6 − B5)/(B5 − B4) 

MCARI* Modified chlorophyll absorption ratio 

index, [(B5 − B4) − 0.2 × (B5 − B3)] × 

(B5 − B4) 

NDVI45* Normalised difference vegetation index 

with bands 4 and 5, (B5 − B4)/(B5 + B4) 

NDVI56* Normalised difference vegetation index 

with bands 5 and 6, (B6 − B5)/(B6 + B5) 

NDVI57 Normalised difference vegetation index 

with bands 5 and 7, (B7 − B5)/(B7 + B5) 

NDVI58a Normalised difference vegetation index 

with bands 5 and 8a, (B8a − B5)/(B8a + 

B5) 

NDVI67* Normalised difference vegetation index 

with bands 6 and 7, (B7 − B6)/(B7 + B6) 

NDVI68a Normalised difference vegetation index 

with bands 6 and 8a, (B8a − B6)/(B8a + 

B6) 

NDVI78a Normalized difference vegetation index 

with bands 7 and 8a, (B8a − B7)/(B8a + 

B7) 

3 SRTM Topographic 

Indicators 

Elevation* Elevation in m 

Slope (β)* Slope 

Aspect Aspect 

Surface 

roughness 

Surface roughness, 1/cos β 

*Filtered predictor variables based on Random Forest variable importance, 205 

 206 

 207 

2.2.2 Ground truth data 208 
The reference field biomass estimates were obtained using the volume and wood density of 209 

each tree species by substituting tree diameter values from 2018 to 2020 following the 210 

method suggested by the Forest Survey of India.
50

 A plot measuring 1ha (100m x100m), sub-211 

divided into 25 quadrants of 0.04 ha each, was established as the standard measurement unit. 212 

The plot's direction was set to true north and was precision geo-located using a differential 213 

global navigation satellite system (DGNSS) receiver. Total station was used for marking 214 

20x20 meter quadrant on the ground, and measurements were acquired in 10 quadrants within 215 

each plot. The Quadrants were identified based on stratified random sampling and 216 

accessibility. Plot-level biomass measurements were derived by upscaling the sampled 217 

quadrants. The list of parameters measured in each quadrant are listed in Table 2. For several 218 

sampling plots, Terrestrial Laser scanning (TLS) derived tree measurements were generated 219 

to account for the non-availability of a few tree-specific parameters and to calibrate local 220 

allometric equations. At each site, multiple scans-based TLS measurements were conducted 221 

over four circular plots with a radius of 20m. To ensure inter-comparison and calibration of 222 

the estimations, TLS scans were undertaken at some sites were full tree measurements and 223 
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equations are available. Estimations of tree parameters from TLS modelling
36

 are considered 224 

field data equivalent. Distributed across the range of AGB variability in the study area, 225 

reference data on AGB and other tree parameters were acquired at 100 measurement plots. 226 

 227 

Table 2.  Summary of the parameters measured at reference plots during ground truth data 228 

acquisitions. 229 

Sl. 

No. 

Parameter Instrument 

1 Height Leica  Distometer S910 

2 Diameter at Breast Height (DBH) Meter tape 

3 Leaf Area Index (LAI) Licor LAI Meter2200 

4 Fraction of Photosynthetically 

Active Radiation (fPAR) 

Quantum Sensor 

5 Species name/family Taxonomist 

6 Frequency Manual counting 

7 Bark/stem Sampling (FSI volume 

equations)  

As permitted; manually chopping off selected 

pieces of stem/ Collection from a nearby 

timber depot 

 230 

2.3 Method for the Estimation of AGBD and Carbon Stocks and Validation 231 

 232 

The overall methodological framework used to estimate Above Ground Biomass Density 233 

(AGBD) and Carbon stock is given in Figure 2. For the complementary feature level fusion 234 

of remote sensing data from different sensors and for calibrating a model for estimating 235 

AGB, we used the Random Forests machine learning (ML) algorithm in the regression mode. 236 

Numerous ML algorithms are available in the literature,
51,52

 differentiated for their 237 

computational performance, ability to handle random and categorical variables, level of 238 

expert involvement, etc. Based on the relevant literature and our pre-implementation 239 

experiments for the selection of an appropriate ML algorithms, Random Forests (RF), 240 

amongst a host of ML algorithms such as Support Vector Machines (SVM), Multinomial 241 

Logistics Regression (MLR), Naive Bayes, K-Nearest Neighbours, Gradient Boosting (GB), 242 

AdaBoosting (AB) has offered consistently higher performance. We, therefore, chose the RF 243 

algorithm for non-parametric integration and modelling of biomass using field inventory and 244 

multi-source remote sensing data. 245 

  246 

From the GEDI L4B dataset, 1,000 AGB density points were sampled, which were 247 

used for machine learning model training and map visualisation. Further, the training data 248 

were split into training and validation sets. The training dataset was partitioned into training 249 

(70%) and validation (30%). Further, to train and evaluate the RF algorithm, the model 250 

parameter ―number of trees‖ was defined as 500 to make the model statistically robust. Then, 251 

the RF algorithm was executed in regression mode, considering the predictor variables, 252 

including Sentinel-1 and Sentinel-2 mosaic and SRTM data, targeting the mean aboveground 253 

biomass obtained from the GEDI L4B dataset. To analyse the model's performance, a 254 

variable importance test was performed to understand whether the predictors had more 255 

influence on the model. The correlation was assessed between predicted and observed data 256 

and Root-Mean Square Error (RMSE) was computed. To optimize the model further, the 257 

predictor variables having the least significance were filtered out based on the Gini Index
53

 258 

(Figure 3) and the model was re-calibrated. The prediction model thus optimized was 259 

validated using hold-out ground truth measurements and the spatially continuous AGBD map 260 

was generated.  261 
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 262 

Calculating carbon stock as biomass consists of multiplying the total biomass by a 263 

conversion factor representing the average carbon content in biomass. It is not possible to 264 

separate the different biomass components to account for variations in carbon content as a 265 

function of the biomass component. Therefore, the coefficient of 0.55 for the conversion of 266 

biomass to C offered by Ref
54

 is generalised here to conversions from biomass to carbon 267 

stock: C = 0.55 × biomass (Mg/ha).
55

 Further, to understand the distribution of carbon across 268 

the study area, its variation was studied across different land use classes and elevation 269 

gradients. 270 

 271 

 272 
Figure 2. Methodological framework for estimating aboveground biomass (AGB) and carbon 273 

stock using multi-sensor remote sensing data. 274 

 275 

 276 

 277 
Figure 3. The importance feature evaluation computed based on the Gini Index for 278 

implementing the Random Forests algorithm for the multi-sensor remote sensing data used in 279 

the AGB estimation (the features are abbreviated in Table 1). 280 

 281 

3 Results, Analysis, and Discussion 282 
 283 

The validated results of AGB estimation are shown in Figures 4 and 5. The overall AGB of 284 

Kudremukh National Park varies between 261.68 to 48.94 Mg/ha (Figure 4), with a mean 285 
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AGB of 149.18 Mg/ha. A strong correlation is observed between the estimated and measured 286 

AGB, wherein the goodness of fit (R
2
) is 0.86 (Fig. 5) with an RMSE value of 12.94 Mg/ha, 287 

less than 10% of the mean value. These estimates are good considering the study site's vast 288 

geographical area and diversity. The estimates provided by the model are not random, as 289 

confirmed by the F-test, and are statistically significant at a confidence level of 95%. To 290 

understand the response of the model developed to various levels of AGB, the residual plot is 291 

shown in Figure 6. As evident, the points are randomly dispersed, and there is no systematic 292 

pattern in the variations of the AGB residuals, suggesting no generic overestimation or 293 

underestimation in the model. Even Though there is a substantial underestimation of biomass 294 

at higher AGB levels, this pattern appears to be a random feature, as evident from the much 295 

higher-level biomass.  296 

 297 

 298 
Figure 4. Aboveground Biomass (AGB) map of the Kudremukh National Park, Western 299 

Ghats, India, obtained from the ML-based modelling of multi-sensor remote sensing and field 300 

inventory data. 301 

 302 
Figure 5. Comparison of the estimated and measured AGB of the Kudremukh National Park, 303 

Western Ghats, India. 304 

 305 
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 306 
Figure 6. Residual plot of the AGB generated from the paired differences between the 307 

estimated and measured AGB values. 308 

 309 

The ML-based estimations reveal that the Aboveground Carbon stock (AGCS) ranges from 310 

150 to 50 Mg/ha (Figure 6) with a mean of 93.69 Mg/ha. It can be observed that a major 311 

portion of the protected area‘s AGCS ranges between 50.32 and 73.72 Mg/ha (37.93%), 312 

which is majorly composed of grasslands. About 79.89% of the AGCS lies at less than 313 

1000m elevation (Table 3). This is because the lower elevation has many denser and 314 

continuous patches of forests consisting of moist evergreen, semi-evergreen, moist deciduous 315 

and dry deciduous forests. As one moves towards higher elevations, the forests become 316 

patchier and stunted in adapting to the harsh climatic conditions in higher elevations. Also, 317 

the shallow soil profile in the higher elevations acts as one of the regulatory agents for tree 318 

growth. Most land covers in higher elevations are grassland or rocky outcrops. 319 

 320 

Table 3. Elevation-wise distribution of aboveground carbon stock across the Kudremukh 321 

National Park, Western Ghats, India. 322 

Sl. No 

Elevation 

(m) Area(ha) 

Carbon 

Stock (Mg) 

Carbon Stock 

(Mg/ha) 

Carbon 

Stock (%) 

1 <=1000 60352.76 5913361.47 97.98 79.89 

2 1000-1200 11205.97 900189.22 80.33 12.16 

3 1200-1400 5230.33 401859.89 76.83 5.43 

4 1400-1600 1517.38 125283.72 82.57 1.69 

5 >1600 693.56 61191.63 88.23 0.83 

Total 79000 7401885.94 93.69 100 

 323 

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 9, 2024

ISSN NO : 1869-9391

PAGE NO: 148

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



12 | P a g e  

 

 324 
Figure 6. Spatial distribution of the estimated Aboveground Carbon Stock (AGCS) across the 325 

Kudremukh National Park, Western Ghats, India. 326 

 327 

The important wet evergreen forest species in high-altitude (above 1400m) include  Litsea 328 

floribunda, Symplocos racemosa, Wendlandia thyrsoidea and others,  contributing less than 329 

3% of the carbon stock of the entire landscape. On the other hand, the low-altitude wet 330 

evergreen forest (under 1200 m) hosts species such as Syzygim hemisphericum, Hopea 331 

canarensis, Myristica dactyloides, Persia macrantha, Palaquium ellipticum, Poeciloneuron 332 

indicum, Garcinia gummi-gutta., contributing 92.05% of the total aboveground carbon stocks 333 

of Kudremukh National Park (Table 4). Much of the landscape is covered by forest (66.26%) 334 

and grasslands (23.41%) which contribute to 71.30% and 18.64% of AGCS, equivalent to 335 

5302990.96 Mg (101.14 Mg/ha) and 1383075.78 Mg (74.68 Mg/ha) of the carbon stock 336 

respectively. Plantations and croplands, with ~4% of the land cover, account for 212120.45 337 

Mg (99.41 Mg/ha) and 62559.63 (89.47 Mg/ha), respectively. Other land uses, including 338 

rocky outcrops, built-up, and waterbodies, contribute to 6.75% of the area. The vegetation in 339 

this land use class contributes to 472066.9 Mg (85.13 Mg/ha) (Table 4). 340 

 341 

Table 4. Land use/land cover (LULC) wise distribution of aboveground carbon stock across 342 

the Kudremukh National Park, Western Ghats, India. 343 

Sl. No.  LULC 

Area Carbon stock 

ha % Mg Mg/ha % 

1 Forest 52304.53 66.26 5290273.24 101.14 71.30 

2 Grassland 18520.73 23.41 1383075.78 74.68 18.64 

3 Plantation 2133.70 2.70 212120.45 99.41 2.86 

4 Cropland 699.25 0.88 62559.63 89.47 0.84 

5 Rocky outcrop 372.60 0.47 31404.53 84.29 0.42 

6 Built up 1497.00 1.89 116281.66 77.68 1.57 

7 Waterbody 3472.21 4.39 324380.71 93.42 4.37 
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Total 79000.00 100 7420096.00 93.94 100 

 344 

The earliest studies by Ref 
56

 have identified that the climax vegetation of these 345 

forests is tropical evergreen with poorer localities of semi-evergreen as a sub-type and rare 346 

richer localities with Poeciloneuron indicum as the principal outcrop. Physiognomic stages, 347 

such as scrub, savanna, etc., are also seen. Three important forest types, viz., pre-montane, 348 

low-altitude evergreen and semi-evergreen, are also discernible. The difference in the AGCS 349 

of tree cover can be attributed to different forest types, elevation, forest age and historical 350 

disturbances such as selective felling or logging, forest fires, mining, and other anthropogenic 351 

activities. The spatial distribution of AGCS acts as a potential indicator for understanding the 352 

ecosystem services offered by the forest landscapes. The total carbon stock of Kudremukh 353 

National Park is 7401885.94 Mg. 354 

Geographically large-scale and high-resolution maps of carbon stocks are invaluable 355 

baseline information products for understanding the contributions and status of the dynamics 356 

of carob-source sinks in ecologically fragile and geographically diverse biodiversity hotspots. 357 

Rich in biodiversity and exhibiting the extremes of species heterogeneities by various factors 358 

of forest landscape systems, global biodiversity hotspots have undergone unprecedented 359 

anthropogenic disturbances and biological transformations. Traditional field inventory and 360 

remote sensing data-based methods have been widely used for estimating proxy variables of 361 

carbon stock, such as biomass, canopy density, tree height, etc. Even though good accuracy is 362 

reported, most studies have considered either coarse resolution or limited geographical 363 

extents in the implementations. Thus, the model results and inferences are often not 364 

applicable to full-scale and highly heterogeneous forest ecosystems such as the Western 365 

Ghats of India. Aimed at contributing to the global research efforts of developing and 366 

demonstrating methods for large areas but sensitive to localised interactions of carbon 367 

estimations in forest ecological systems, we have undertaken this research assessing and 368 

demonstrating the potential of an ML-based multi-source remote sensing data approach for 369 

the aboveground carbon stock (AGCS) estimation over an entire national park (Kudremukh 370 

National Park), a functional representative of the Western Ghats of India. The study 371 

employed a comprehensive methodology integrating field inventory data with remote sensing 372 

data from various sensors to estimate the aboveground biomass (AGB) and carbon stocks in 373 

Kudremukh National Park. Utilising data from LiDAR (GEDI), SAR (Sentinel-1), 374 

multispectral imagery (Sentinel-2), DEM (SRTM), field-inventory measurements, and 375 

adopting an appropriate ML algorithm, the study has successfully demonstrated the prospect 376 

of generating high-resolution maps of AGB. The AGB estimates of the Kudremukh National 377 

Park range from 261.68 to 48.94 Mg/ha, with a mean of 149.18 Mg/ha. The estimation of 378 

AGCS reveals values ranging from 150 to 50 Mg/ha, with a mean of 93.69 Mg/ha. 379 

 380 

The study highlighted notable trends in carbon distribution, with most carbon stocks 381 

concentrated in forests below 1000m elevation, dominated by wet evergreen species. Forests 382 

at higher elevations exhibit lower carbon stocks due to patchier vegetation and harsher 383 

climatic conditions. Additionally, anthropogenic activities such as selective felling, logging, 384 

and mining contribute to the variations in the carbon stocks across different forest types and 385 

elevations. The results underscore the importance of understanding ecosystem services 386 

provided by forest landscapes, with carbon stock distribution as a crucial indicator. The total 387 

carbon stock estimation of 7,401,885.94 Mg offers valuable insights for conservation and 388 

management strategies in Kudremukh National Park. 389 

Despite the study's merits in providing accurate carbon stock estimates across varied 390 

spatial and ecological contexts, it has limitations. These limitations include potential biases in 391 

field inventory data, uncertainties in remote sensing data compatibilities, and generalising 392 
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conversion factors for biomass to carbon estimations. Nevertheless, the study's integrated 393 

approach demonstrates its significance in advancing our understanding of forest carbon 394 

dynamics. It underscores the importance of utilising multi-sensor remote sensing techniques 395 

for comprehensive ecosystem assessments. 396 

 397 

4 CONCLUSIONS 398 

 399 

Large-area and high-resolution estimation and mapping of aboveground carbon stocks 400 

(AGCS) of highly productive and ecological heterogeneous forest ecosystems is an 401 

invaluable methodological and information resource for functional forest management. 402 

Geographically covering an entire protected national park in the Western Ghats of India, this 403 

study has implemented and analysed a method for AGCS estimation at 10m spatial resolution 404 

by feature-level fusion of data from multiple but complementary remote sensors (LDAR, 405 

SAR and multispectral sensors) in a machine learning methodological framework. 406 

Considering biomass as the proxy variable, the distribution of AGCS across the landscape 407 

addresses diversity, disturbance, and distribution of the tree species. Has also been analysed. 408 

Integrated by the RF machine learning algorithm, the primary predictor variable, discrete 409 

records of biomass density obtained from the space-borne LIDAR (GEDI L4b) datasets blend 410 

seamlessly with other remote sensing datasets and appear as a viable alternative to traditional 411 

field-based inventory methods. Compared with field inventory values, the estimates of AGB 412 

from the methodology adopted are 86% accurate. They are responsive to the variation of 413 

AGCS across heterogeneous landscapes with varied elevation, ecology, and geological 414 

features. The study contributes valuable insights to carbon stock assessment and ecosystem 415 

dynamics and recommends adapting the integration of GEDI LiDAR, Sentinel-1, Sentinel-2, 416 

and SRTM datasets to generate detailed AGB maps and carbon stock estimates. The study 417 

also recommends promoting interdisciplinary collaboration between forest researchers, 418 

remote sensing experts, and policymakers to facilitate the translation of scientific findings 419 

into practical applications for climate change mitigation and biodiversity conservation efforts. 420 
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