SHEAF REPRESENTATION OF ALMOST BOOLEAN ALGEBRAS

R. C. Mani¹ K. Krishna Rao², K. Rama Prasad^{3*}and Ch. Santhi Sundar Raj⁴

¹Department of Mathematics, PVP Siddhartha Institute of Technology, kanuru, Vijayawada-520007, A.P., India.

²Department of Mathematics, SRK Institute of Technology, Enkipadu, Vijayawada-521108, A.P., India.

^{3,4}Department of Engineering Mathematics, Andhra University Visakhapatnam- 530 003, A.P., India.

Abstract

An Almost Boolean Algebra $(A, \land, \lor, 0)$ (abbreviated as ABA) is an Almost Distributive Lattice (ADL) with a maximal element in which for any $x \in A$, there exists $y \in A$ such that $x \land y = 0$ and $x \lor y$ is a maximal element in A. If (S, Π, X) is a sheaf of nontrivial discrete ADLs over a Boolean space such that for any global section f, support of f is open, then it is proved that the set $\Gamma(X, S)$ of all global sections is an ABA. Conversely, it is proved that every ABA is isomorphic to the ADL of global sections of a suitable sheaf of discrete ADL over a Boolean space.

AMS Subject Classification: 06D99, 06D15

Key words: Almost Boolean Algebra (ABA), discrete ADL, dense element, maximal element, global section, support.

1 Introduction

The axiomatization of George Boole's two valued propositional calculus led to the concept of Boolean algebra (ring). M. H. Stone [3] established a strong duality between Boolean algebras (rings) and Compact Hausdorff topological spaces in which closed and open subsets form a base for the topology. After the notion of Boolean algebra (ring) came to light, several generalizations have come up in which the ring theoretic generalizations like regular rings, p-rings, biregular rings etc and the lattice theoretic generalizations like distributive lattices, Hayting algebras, post algebras, pseudo-complemented distributive lattices, Stone lattices etc. U. M. Swamy and G. C. Rao [6] have introduced a common abstraction of these two streams in the form of an Almost Distributive Lattice (ADL) as an algebra $(A, \land, \lor, 0)$ of type (2, 2, 0)which satisfies all the axioms of a distributive lattice with 0 except the commutativity of the binary operations and, in this case, the commutativity of either of the binary operation is equivalent to that of the other. An ADL A with a maximal element m is said to be an ABA if for each $x \in A$, there exists $y \in A$ such that $x \wedge y = 0$ and $x \vee y$ is maximal (equivalently, for each $x \in A$, the interval [0,x] is a Boolean algebra under the induced operations \wedge and \vee).

In this paper, we have considered the prime spectrum of a nontrivial Almost Bololean Algebra which forms a compact, Hausdorff and totally disconnected topological space and it is well known that such spaces are called Boolean space. With this as the base space, we have constructed a sheaf of ADLs whose ADL of continuous sections is isomorphic to the given Almost Boolean Algebra.

2 Preliminaries

In this section, we collect certain definitions and properties of ADLs from [6, 7, 8] that are required in the main text of this paper.

Definition 2.1. An algebra $A = (A, \land, \lor, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following identities.

- (1) $0 \wedge a = 0$
- (2) $a \lor 0 = a$
- (3) $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$

$$(4) (a \lor b) \land c = (a \land c) \lor (b \land c)$$

(5)
$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

(6)
$$(a \lor b) \land b = b$$
.

Example 2.2. Every non-empty set A can be regarded as an ADL as follows. Let $a_0 \in X$. Define the binary operations \vee, \wedge on X by

$$a \lor b = \begin{cases} a & \text{if } a \neq a_0 \\ b & \text{if } a = a_0 \end{cases} \qquad a \land b = \begin{cases} b & \text{if } a \neq a_0 \\ a_0 & \text{if } a = a_0. \end{cases}$$

Then (A, \vee, \wedge, a_0) is an ADL (where a_0 is the zero element).

Definition 2.3. Let $(A, \land, \lor, 0)$ be an ADL. For any a and $b \in A$, define

$$a \leq b \ if \ a = a \wedge b \ (equivalently \ a \vee b = b).$$

Then \leq is a partial order on A.

Theorem 2.4. If $(A, \vee, \wedge, 0)$ is an ADL, for any $a, b, c \in A$, we have the following:

- (1) $a \lor b = a \Leftrightarrow a \land b = b$
- (2) $a \lor b = b \Leftrightarrow a \land b = a$
- (3) \wedge is associative in A
- (4) $a \wedge b \wedge c = b \wedge a \wedge c$
- (5) $(a \lor b) \land c = (b \lor a) \land c$
- (6) $a \wedge b = 0 \Leftrightarrow b \wedge a = 0$
- (7) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- (8) $a \wedge (a \vee b) = a$, $(a \wedge b) \vee b = b$ and $a \vee (b \wedge a) = a$
- (9) $a \le a \lor b \text{ and } a \land b \le b$
- (10) $a \wedge a = a \text{ and } a \vee a = a$
- (11) $0 \lor a = a \text{ and } a \land 0 = 0$
- (12) If a < c, b < c then $a \wedge b = b \wedge a$ and $a \vee b = b \vee a$

$$(13) \quad a \lor b = (a \lor b) \lor a.$$

Definition 2.5. A homomorphism between ADLs $(A, \vee, \wedge, 0)$ into an ADL L', we mean, a mapping $f: A \to A'$ satisfying the following:

- (1) $f(a \lor b) = f(a) \lor f(b)$
- (2) $f(a \wedge b) = f(a) \wedge f(b)$
- (3) f(0) = 0.

A nonempty subset I of an ADL A is called an ideal of A if $x \lor y \in I$ and $x \land a \in I$ whenever $x, y \in I$ and $a \in L$. For any $X \subseteq A$, the ideal generated by X is $(X] = \left\{\left(\bigvee_{i=1}^n a_i\right) \land x : a_i \in X, x \in A, n \in \mathbb{Z}^+\right\}$. If $X = \{x\}$, then we write (x] for (X] and this is called a principal ideal generated by x. The set of all principal ideals of A is a distributive lattice and it is denoted by $P\mathfrak{I}(A)$. A proper ideal P of A is called prime if for any $x, y \in A, x \land y \in P$ then $x \in P$ or $y \in P$. For any $x, y \in A$ with $x \leq y, [x, y] = \{t \in A : x \leq t \leq y\}$ is a bounded distributive lattice with respect to the operations induced from those on A. An element m is maximal in (A, \leq) if and only if $m \land x = x$ for all $x \in X$. An ADL A is said to be discrete if every nonero element is maximal. The ADL given in the example 2.2 is a discrete ADL. For any $X \subseteq A$, $X^* = \{a \in A : x \land a = 0 \ \forall \ x \in X\}$ is an ideal of A and A is called the annihilator of A. We don't know, so far, whether A is associative in an ADL or not. In this paper A denotes an ADL in which A is associative.

Lemma 2.6. Let A be an ADL and I is an ideal of A. Then, for any $a, b \in A$, we have the following:

- $(1) (a] = \{a \land x : x \in A\}$
- $(2) \ a \in (b] \Leftrightarrow b \wedge a = a$
- $(3) \ a \land b \in I \Leftrightarrow b \land a \in I$
- $(4) \ (a] \cap (b] = (a \wedge b] = (b \wedge a]$
- (5) $(a] \lor (b] = (a \lor b] = (b \lor a]$
- (6) $(a] = A \iff a \text{ is maximal.}$

Lemma 2.7. Let A be an ADL and $x, y \in A$. Then the following statements hold:

$$(1) \{x \vee y\}^* = \{x\}^* \cap \{y\}^*$$

4

(2)
$$\{x \wedge y\}^* = \{y \wedge x\}^*$$

(3)
$$\{x\}^{***} = \{x\}^*$$

$$(4) \ x \le y \Rightarrow \{y\}^* \subseteq \{x\}^*$$

(5)
$$\{x \wedge y\}^{**} = \{x\}^{**} \cap \{y\}^{**}$$

Definition 2.8. An ADL $(A, \land, \lor, 0)$ is said to be relatively complemented if every interval in A is a Boolean algebra.

Theorem 2.9. Let A be an ADL. Then the following are equivalent to each other.

- (1) For any $a, b \in A$ there exists $x \in A$ such that $a \land x = 0$ and $a \lor x = a \lor b$
- (2) For any $a \leq b$ in A, [a, b] is a complemented lattice.
- (3) For any $a \in A$, [0, a] is complemented lattice

Definition 2.10. A nontrivial ADL A is called an Almost Boolean algebra (ABA) if it has a maximal element and satisfies one, and hence all of the equivalent conditions given in the above theorem.

Theorem 2.11. Let A be an ADL with a maximal element. Then the following are equivalent to each other.

- (1) A is an Almost Boolean algebra
- (2) For any $a \in A$, there exists $b \in A$ such that $a \wedge b = 0$ and $a \vee b$ is maximal.
- (3) [0, m] is a Boolean algebra for all maximal elements m
- (4) There exists a maximal element m such that [0, m] is a Boolean algebra.

Theorem 2.12. Let A be an ADL and m and n be maximal elements in A. Then the lattices [0, m] and [0, n] are isomorphic to each other. Moreover, the Boolean algebras [0, m] and [0, n] are isomorphic when A is Almost Boolean algebra.

Theorem 2.13. Let $(A, \wedge, \vee, 0)$ be an ABA. Then for any a and b in A there exists a unique $x \in A$ such that $a \wedge x = 0$ and $a \vee x = a \vee b$

Definition 2.14. A nontrivial ADL A is called dense if $a \wedge b \neq 0$ for all $a \neq 0$ and $b \neq 0$ (equivalently, $\{a\}^* = \{0\}$, for any $0 \neq a \in A$).

3 Sheaf Representation of ABAs

Definition 3.1. A triple (S,Π,X) is called a sheaf over X if S and X are topological spaces and $\Pi:S\to X$ is a local homeomorphism of S onto X; that is Π is a surjective map and, for any $s\in S$, there are open sets G and U containing s and $\Pi(s)$ in S and X respectively such that the restriction of Π to G is a homeomorphism of G onto U.

Let (S, Π, X) be a sheaf over X. Then $\Pi: S \to X$ is continuous and open map. Here S is called the sheaf space, X the base space and Π the projection. For any $Y \subseteq X$, a continuous map $f: Y \to S$ such that $\Pi \circ f$ is identity on Y is called a section on Y. Sections on the whole space X are called global sections. For any $x \in X$, the set $S_x = \{s \in S : \Pi(s) = x\} = \Pi^{-1}(\{x\})$ is called the stalk at x. The set of all global sections will be denoted by $\Gamma(X,S)$.

Definition 3.2. A sheaf (S, Π, X) is called a sheaf of discrete ADLs if for each $x \in X$, the stalk S_x is an (discrete) ADL $(S_x, \wedge, \vee, 0_x)$ satisfies the following.

- (1) the operations \wedge and \vee are continuous mappings of $S \otimes S$ into S, where $S \otimes S = \{(s,t) \in S \times S : \Pi(s) = \Pi(t)\}$
- (2) the map $x \mapsto 0_x$ is a continuous map of X into S, where 0_x is the zero element in the stalk S_x

Theorem 3.3. Let (S, Π, X) be a sheaf of ADLs. Then $\Gamma(X, S)$ is an ADL under the pointwise operations.

Proof. Since $x \mapsto 0_x$ is continuous, it is a section on X and we denote it by $\overline{0}$. Therefore $\overline{0} \in \Gamma(X, S)$ and hence $\Gamma(X, S) \neq \emptyset$. For any $f, g \in \Gamma(X, S)$, we define $f \wedge g$ and $f \vee g$ by

$$(f \wedge g)(x) = f(x) \wedge g(x)$$
 and
$$(f \vee g)(x) = f(x) \vee g(x) \text{ for all } x \in X.$$

The \wedge and \vee on the right-hand side are those in the stalk S_x which is an ADL. It can be easily verified that $(\Gamma(X,S), \wedge, \vee, \overline{0})$ is an ADL.

Let us recall that a topological space X is called a Boolean space if X is Compact, Hausdorff and totally disconnected. Now, we first find an ABA from a given sheaf over a Boolean space.

Theorem 3.4. Let (S, Π, X) be a sheaf of nontrivial discrete ADLs over a Boolean space X such that, for any global section f, support $|f| = \{x \in X : f(x) \neq 0_x\}$ is open in X. Then $\Gamma(X, S)$ is an ABA.

Proof. By the above theorem $\Gamma(X, S)$ is an ADL under the pointwise operations. It is easily verified that, for any global sections f and q, the set

$$\langle f, g \rangle = \{ x \in X : f(x) = g(x) \}$$

is a closed set in X and by hypothesis $\langle f, \overline{0} \rangle (=|f|)$ is open also. Thus |f| is a closed set in X for all global sections f. For each $x \in X$, we can choose $s(\neq 0_x) \in S_x$ and a global section f_x such that $f_x(x) = s \in S_x$ and hence $x \in |f_x|$, the support of f_x . Since to each $x \in X$, $|f_x|$ is clopen and X is compact, there exists clopen sets $U_1, U_2, \ldots U_n$ such that

and
$$U_i \cap U_j = \emptyset \text{ for } i \neq j$$

 $U_1 \cup U_2 \cup \dots \cup U_n = X$

and there is global section f_i such that $f_i(y) \neq o_y$ for all $y \in U_i$. Let $f = f_1 \lor f_2 \lor \cdots \lor f_n$. Then f is a global section and |f| = X. Let $g \in \Gamma(X, S)$. Then $(f \land g)(x) = f(x) \land g(x)$ for all $x \in X$ (since each S_x is discrete and hence every nonzero element in S_x is maximal) and hence $f \land g = g$ for all $g \in \Gamma(X, S)$. Therefore $\Gamma(X, S)$ is an ADL with a maximal element. Further, let $g \in \Gamma(X, S)$ and f be any maximal element in $\Gamma(X, S)$. Then $f(x) \neq 0_x$ for all $x \in X$. Define $h : S \to X$ by

$$h(x) = \begin{cases} 0_x & \text{if } x \in |g| \\ f(x) & \text{if } x \notin |g|. \end{cases}$$

Then h is continuous (since $x \mapsto 0_x$ and f are continuous and |g| is clopen). Therefore $h \in \Gamma(X, S)$. Also $(g \wedge h)(x) = g(x) \wedge h(x) = 0_x$ for all $x \in X$ and hence $g \wedge h = \overline{0}$. Further $(g \vee h)(x) \neq 0_x$ for all $x \in X$ and hence $g \vee h$ is maximal in $\Gamma(X, S)$. Thus $\Gamma(X, S)$ is an ABA.

In order to prove a converse of above theorem, we first obtain a sheaf over a Boolean space from a given ABA. First we recall the following from [6].

Definition 3.5. For any element a in an ADL A, define

$$\theta_a = \{(x, y) \in A \times A : a \wedge x = a \wedge y\}.$$

Then θ_a is a congruence relation on A.

Lemma 3.6. Let A be an ABA and P be a prime ideal of A. Let

$$\theta_P = \{(x, y) \in A \times A : a \wedge x = a \wedge y \text{ for some } a \in A - P\}.$$

Then θ_P is a congruence relation on A and the Quotient A/θ_P is a nontrivial discrete ABA.

Proof. Clearly $\theta_P = \bigcup_{a \in A-P} \theta_a$ and it is easy to verified that θ_P is a congruence relation on A. Also, for any $x \in A$,

$$x \in P \iff (x,0) \in \theta_P.$$

Since P is a proper ideal of A, there exists $x \in A - P$ and hence $(x, 0) \notin \theta_P$ so that $x/\theta_P \neq 0/\theta_P$. Therefore A/θ_P is a nontrivial ADL. Now, if $x/\theta_P \neq 0/\theta_P$, then $x \notin P$ and $(x \land a, a) \in \theta_P$ so that $x/\theta_P \land a/\theta_P = (x \land a)/\theta_P = a/\theta_P$ for all $a \in A$ and hence x/θ_P is maximal in A/θ_P . Therefore, A/θ_P is discrete ABA.

Let us recall from [6] that, for any ABA $A = (A, \land, \lor, 0, m)$, Spec(A) denotes the space of all prime ideals of A together with the hull-kernal topology for which $\{X_a : a \in A\}$ is a base, where $X_a = \{P \in Spec(A) : a \notin P\}$ and that Spec(A) is a Boolean space (a Compact Hausdorff and totally disconnected topological space).

Lemma 3.7. Let A be an ABA and $a \in A$. Then $\theta_a = \bigcap \{\theta_P : P \in Spec(A) \text{ and } a \notin P\} = \bigcap \{\theta_P : P \in X_a\}.$

Proof. First, it can be easily verified $x, y \in A$, the set $\langle x, y \rangle = \{b \in A : b \land x = b \land y\}$ is an ideal of A. Let $a \in A$. we have that $\theta_P = \bigcup_{b \in A-P} \theta_b$. Therefore

$$P \in X_a \Rightarrow a \notin P \Rightarrow \theta_a \subseteq \theta_P$$
.

Hence $\theta_a \subseteq \bigcap_{P \in X_a} \theta_P$. On the other hand, suppose that $(x,y) \notin \theta_a$. Then $a \wedge x \neq a \wedge y$ and hence $a \notin \langle x,y \rangle$ is an ideal, there exists a prime ideal P of A such that $\langle x,y \rangle \nsubseteq P$ and $a \notin P$. Now $P \in X_a$ and $(x,y) \notin \theta_P$. Therefore $\bigcap_{P \in X_a} \theta_P \subseteq \theta_a$. Thus $\bigcap_{P \in X_a} \theta_P = \theta_a$.

Corollary 3.8. If A is an ABA, then $\bigcap \{\theta_P : P \in Spec(A)\} = \Delta_A$, the diagonal relation on A.

Proof. It follows by the fact that, for any maximal element m in A, $X_m = X$ and, $\theta_m = \Delta_A$.

Theorem 3.9. Any ABA is isomorphic to $\Gamma(X,S)$ for a suitable sheaf (S,Π,X) of discrete ADLs over a Boolean space X.

Proof. Let A ba an ABA and X = Spec(A). Then X is a Boolean space. For any $P \in X$, let $S_P = A/\theta_P$ and S be the disjoint union of $A/\theta_P{}'^s$, $P \in X$. For any $x \in A$, define $\hat{x} : X \to S$ by $\hat{x}(P) = x/\theta_P$. Define $\Pi : S \to X$ by

 $\Pi(s) = P$ if $s \in S_P$. Let S be equipped with the largest topology with respect to which each $\hat{x}, x \in A$, is continuous. Now we shall prove that (S, Π, X) is a sheaf of discrete ADLs over the Boolean space X and finally we proved that $A \cong \Gamma(X, S)$. First, we prove that the class $\{\hat{x}(X_a) : x, a \in A\}$ forms a base for the topology on S. Clearly $\bigcup_{x,a\in A} \hat{x}(X_a) = S$. For any $x,y\in A$ and

 $a, b \in A, \text{ we have}$ $s \in \hat{x}(X_a) \cap \hat{y}(X_b) \Rightarrow s = x/\theta_P = y/\theta_Q \text{ for some } P \in X_a, Q \in X_b$ $\Rightarrow P = \Pi(s) = Q$ $\Rightarrow P = Q \in X_a \cap X_b \text{ and } c \wedge x = c \wedge y \text{ for some } c \in A - P$ $\Rightarrow P \in X_{a \wedge b \wedge c} \text{ and } a \wedge b \wedge c \wedge x = a \wedge b \wedge c \wedge y$ $\Rightarrow P \in X_{a \wedge b \wedge c} \text{ and } s = \hat{x}(P) = \hat{y}(Q)$ $\Rightarrow s \in \hat{x}(X_{a \wedge b \wedge c}) \subseteq \hat{x}(X_a) \cap \hat{y}(X_b).$

Therefore the class mentioned is a base for a topology, say τ on S. Also, for any x, y and $a \in A$,

$$P \in \hat{x}^{-1}(\hat{y}(X_a)) \Rightarrow x/\theta_P = y/\theta_P \text{ and } P \in X_a$$

 $\Rightarrow b \land x = b \land y \text{ for some } b \in A - P$
 $\Rightarrow P \in X_{a \land b} \subseteq \hat{x}^{-1}(\hat{y}(X_a)).$

Therefore each $\hat{x}, x \in A$ is continuous with respect to the topology τ and it can be easily proved that τ is the largest topology on S with respect to which each \hat{x} is continuous. Since $\Pi(s) = P$ for all $s \in S_P = A/\theta_P, P \in$ $X, \Pi: S \to X$ is a bijection mapping. Let $s \in S$. Then $s = x/\theta_P = \hat{x}(P)$ for some $P \in X$ and $x \in A$. If $\Pi(s) = P$, choose $a \in A - P$, then $P \in X_a$ and $s \in \hat{x}(X_a)$. Since $\hat{x}(X_a)$ is open in S and $\hat{x}(X_a)$ is a neighbourhood of s in S and X_a is open neighbourhood of $\Pi(s)$ in X and hence it can be easily verified that any restriction of Π to $\hat{x}(X_a)$ is a homeomorphism of $\hat{x}(X_a)$ onto X_a . Therefore Π is a local homeomorphism of S onto X and hence (S, Π, X) is a sheaf over Boolean space X. Since θ_P is a congruence on A, it follows that the continuity of ADL operations \land , \lor and 0. And, for any $x, y \in A$, $\{P \in X : (x,y) \in \theta_P\}$ is an open subset of X. Also, for each $P \in X, A/\theta_P$ is a nontrivial discrete ADL (by lemma 3.6). Thus (S, Π, X) is a sheaf of nontrivial discrete ADLs over the Boolean space X. Since the operations are point-wise and each stalk A/θ_P is an ADL, it follows that $\Gamma(X,S)$ is also an ADL. Finally define $\alpha: A \to \Gamma(X,S)$ by $\alpha(x) = \hat{x}$ for all $x \in A$. Since $\widehat{x \wedge y} = \widehat{x} \wedge \widehat{y}$ and $\widehat{x \vee y} = \widehat{x} \vee \widehat{y}$, it follows that α is a homomorphism of ADLs. Also, for any $x, y \in A$,

$$\alpha(x) = \alpha(y) \Rightarrow \hat{x} = \hat{y}$$

$$\Rightarrow \hat{x}(P) = \hat{y}(P) \text{ for all } P \in X$$

$$\Rightarrow x/\theta_P = y/\theta_P \text{ for all } P \in X$$

$$\Rightarrow (x,y) \in \bigcap_{P \in X} \theta_P = \Delta_A$$

$$\Rightarrow x = y.$$

Therefore α is an injection. Lastly, let $f \in \Gamma(X,S)$. For each $P \in X$, there exists $x_P \in A$ such that $f(P) = x_P/\theta_P = \hat{x_P}(P)$. Since f and $\hat{x_P}$ are sections on X, we can choose open sets G and W in S and X respectively such that $f(P)(=\hat{x_P}(P)) \in G$, $P(=\Pi(f(P))) \in W$ and $\Pi/G: G \to W$ is a homeomorphism, $f^{-1}(G) \cap \hat{x_P}^{-1}(G)$ is open in X and hence $f^{-1}(G) \cap \hat{x_P}^{-1}(G) = X_{a_P}$ for some $a_P \in A$ (since X_a 's, $a \in A$ form a base for open sets) and $P \in X_{a_P}$. Also, for any $Q \in X_{a_P}$, f(Q) and $\hat{x_P}(Q) \in G$ and $\Pi(f(Q)) = \Pi(\hat{x_P}(Q))$ and implies that $f(Q) = \hat{x_P}(Q)$ (since Π is an injection on G). By using the compactness of X and the fact that X in a Boolean space, there exists $a_1, a_2, \dots a_n \in A$ and $x_1, x_2, \dots x_n \in A$ such that $\bigcup_{i=1}^n x_i = X$ and $f(Q) = \hat{x_i}(Q)$ for all $Q \in X_{a_i}$. Since each X_{a_i} is clopen, we choose $b_1, b_2, \dots b_n \in A$ such that

Then $X_{b_i \wedge b_j} = X_{b_i} \cap X_{b_j} = \emptyset$ for all $i \neq j$, $\bigcup_{i=1}^n X_{b_i} = X$ and $f(Q) = \hat{x}_i(Q)$ for all $Q \in X_{b_i}$. Put $x = \bigvee_{i=1}^n (b_i \wedge x_i)$. Then, for any $1 \leq i \leq n$, $(b_i \wedge x_i, x_i) \in \theta_{b_i}$ and hence $(b_i \wedge x_i) \in \theta_Q$ for all $Q \in X_{b_i}$ and it implies that $(b_i \wedge x_i)/\theta_Q = x_i/\theta_Q$ so that $\widehat{b_i \wedge x_i}(Q) = \hat{x}_i(Q) = f(Q)$ for all $Q \in X_{b_i}$ and for $j \neq i$, $\widehat{b_j \wedge x_j}(Q) = \widehat{b_j}(Q) \wedge \hat{x_j}(Q) = \widehat{0}(Q)$ for all $Q \in X_{b_j}$ (since $b_j \in Q \Rightarrow \widehat{b_j}(Q) = \widehat{0}(Q)$). Therefore, for any $Q \in X$, there exists unique i such that $Q \in X_{b_i}$ and $Q \notin X_{b_j}$ for all $j \neq i$ and hence $\hat{x}(Q) = \bigvee_{i=1}^n \widehat{b_i \wedge x_i}(Q) = \hat{x_i}(Q) = f(Q)$. Thus $f = \hat{x}$. This implies that $\alpha : A \to \Gamma(X, S)$ is an isomorphism of A onto $\Gamma(X, S)$.

Note that in the above sheaf (S, Π, X) the support of any global section is a closed set, since any global section f is of the form \hat{x} for same $x \in A$ and $|f| = |\hat{x}| = X_x$ which is clopen in X.

Acknowledgement

The authors thank Prof. U. M. Swamy for his help in preparing this paper.

References

- [1] G. Gratzer. Universal Algebras. Van Nortrand, Princeton, N. J. 1968.
- [2] B. Stainley and H. P. sanakappanavar. A first course in universal algebra. Springer Verlag, 1981.
- [3] M. H. Stone. Theory of representation for Boolean algebras. Trans. Am. Math. Soc., 45(1)(1936), 40-111.
- [4] U. M. Swamy. Representation of universal algebra by sheaves. Proc. Am. Math. Soc., 45(1)(1974), 55-58.
- [5] U. M. Swamy and V. V. Rama Rao. Triple and sheaf representation od Stone Lattices. Algebra Universalis, 5(1)(1975), 104-113.
- [6] U. M. Swamy and G. C. Rao, Almost Distributive Lattices, *J. Australian Math. Soc.*, (series A), vol. 31 (1981), 77-91.
- [7] U. M. Swamy, Ch. Santhi Sundar Raj and R. Chudamani, On almost Boolean algebras and rings, International journal of Mathematical Archive-7(12), 2016, 1-7.
- [8] U. M. Swamy, Ch. Santhi Sundar Raj and R. Chudamani, Annihilators And Maximisors In ADL's, International Journal of Comuputer and Mathematical research, volume5, issue1, January 2017, page no.1770-1782.