# BIOBLEACHING AND DECHLORINATION OF PAPER PULP USING FUNGAL CULTURES -A BIOREMEDIATION APPROACH

M.Suguna Devakumari

Assistant Professor

Department of Agriculture

School of Agriculture and Biosciences

Karunya Institute of Technology and Sciences, Coimbatore 641114

#### Abstract

To replace or substitute the conventional pulp bleaching chemical chlorine, bio enzymes from fungi were utilized in this study. Thus, environmental contamination by formation of organochlorines, in the downstream could be controlled in the process stage itself. The enzymatic activities and bleaching efficiencies of kraft pulps obtained from various stages of chemical bleaching by fungal enzymes are discussed hereunder. The kappa number reduction (bio bleaching) of the thickener stage pulp was 18.8% with *Phanerochaete chrysosporium* and 9.09% with *Trametes versicolor* compared to the uninoculated control. But for the chlorine stage pulp, *Trametes versicolor* brought about 4.54% reduction of kappa number while there was no reduction in kappa number under *Phanerochaete chrysosporium*. In case of the EP stage pulp, the enzymatic extracts of *P. chrysosporium* brought about 31.3% reduction and *T. versicolor* contributed to 25.0% reduction in kappa number. With reference to the Hypo stage pulp also, *P. chrysosporium* brought about maximum reduction of 33.3% compared to *T. versicolor* (22.2% reduction).

## Key words

Kappa number, Trametes versicolor, Phanerochaete chrysosporium, Biobleaching.

#### Introduction

Certain white-rot fungi like *Trametes versicolor, Phanerochaete chrysosporium* could reduce the lignin content and increase the brightness of kraft pulps without minimizing the pulp quality and quantity. The enzymatic delignification effect of these white rot fungi can be utilized in the bleaching sequences of the pulp mill. Direct physical contact between the fungal hyphae and the pulp fibers is not required, but the presence and enzymatic activity of the live fungus is necessary for long-term delignification.

# Methodology

White rot fungal cultures of *Phanerochaete chrysosporium* and *Trametes versicolor* from Tamil Nadu Agricultural University culture collection were utilized for the study. The 5 day old fungal cultures were inoculated in the mineral salts media with nitrogen content of 0.2% and 1% and incubated in shaker of 250 rpm at 25-30°C. To prevent the fungal pellet formation glass marbles were added to the culture media and fragmented hyphal suspension was obtained. (Kirkpatrick *et al.*, 1989).

| Treatment o      | details |                                                                 |  |  |  |  |  |  |  |
|------------------|---------|-----------------------------------------------------------------|--|--|--|--|--|--|--|
| <b>Factor I</b>  | -       | ungal cultures                                                  |  |  |  |  |  |  |  |
| $F_1$            | -       | Phanerochaete chrysosporium                                     |  |  |  |  |  |  |  |
| $F_2$            | -       | Frametes versicolor                                             |  |  |  |  |  |  |  |
| <b>Factor II</b> | -       | Dosage – Concentration of fungal liquid suspension cultures and |  |  |  |  |  |  |  |
|                  |         | Nitrogen contents                                               |  |  |  |  |  |  |  |
| $\mathbf{D}_1$   | -       | Pulp                                                            |  |  |  |  |  |  |  |
| $D_2$            | -       | Pulp + fungal suspension undiluted [Nitrogen 0.2 %]             |  |  |  |  |  |  |  |
| $D_3$            | -       | Pulp + fungal suspension 2 fold diluted [Nitrogen 0.2 %]        |  |  |  |  |  |  |  |
| $D_4$            | -       | Pulp + fungal suspension 4 fold diluted [Nitrogen 0.2 %]        |  |  |  |  |  |  |  |
| $D_5$            | -       | Pulp + fungal suspension undiluted [Nitrogen 1 %]               |  |  |  |  |  |  |  |
| $D_6$            | -       | Pulp + fungal suspension 2 fold diluted [Nitrogen 1 %]          |  |  |  |  |  |  |  |
| $D_7$            | -       | Pulp + fungal suspension 4 fold diluted [Nitrogen 1 %]          |  |  |  |  |  |  |  |
|                  |         |                                                                 |  |  |  |  |  |  |  |
| Factor III       | -       | Pulp substrate                                                  |  |  |  |  |  |  |  |
| $S_1$            | -       | Thickener stage pulp                                            |  |  |  |  |  |  |  |
| $S_2$            | -       | Chlorine pulp                                                   |  |  |  |  |  |  |  |
| $S_3$            | -       | EP pulp                                                         |  |  |  |  |  |  |  |

S<sub>4</sub> - Hypo pulp

100 g of autoclaved pulp was taken in polypropylene bags. 10 ml of fungal culture suspensions were inoculated into the pulp samples according to the treatment details and incubated at room temperature Pulp samples were taken on the tenth day of incubation and analyzed for kappa number, lignin concentration and residual chlorine.

# Estimation of kappa number

The kappa number is the volume of 0.1 N potassium permanganate solution utilized by one gram of oven dry pulp under the specified conditions.

One gram of oven dry pulp was mixed with 500 ml water and crushed until it was free of fibre clots. Disintegrated sample was transferred to a 2000 ml beaker and volume made up to 795 ml with distilled water ( $25 \pm 0.2^{\circ}$ C). 100 ml of 0.1 N KMnO<sub>4</sub> and 100 ml of 4 N H<sub>2</sub>SO<sub>4</sub> were pipetted out and volume made up to 1000 ± 5 ml. After 10 minutes the reaction was ended by adding 20 ml of 10% KI solution. Using starch indicator, the solution was titrated against sodium thiosulfate. Simultaneously blank titration was carried out without the pulp.

# K = P x f / W, P = ((b-a)) / 0.1 x N

Where,

| W | = | Wt. of moisture free pulp                                               |
|---|---|-------------------------------------------------------------------------|
| Р | = | amount of 0.1N KMnO <sub>4</sub> , actually consumed by the sample (ml) |
| b | = | amount of thiosulfate consumed by the blank (ml)                        |
| a | = | amount of thiosulfate consumed by the sample (ml)                       |
| Ν | = | Normality of thiosulfate                                                |
|   |   | (TAAPI Standard T236,1976)                                              |

#### Estimation of residual chlorine

To 100 ml of pulp supernatant ,10 ml of 10% acetic acid and 10 ml of 10% KI were added and titrated against 0.2N Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> using starch indicator.

#### Results

#### Kappa number

### Thickener pulp

The fungal culture  $F_1$  (*Phanerochaete chrysosporium*) registered the lowest kappa number (19.1) followed by  $F_2$  (*Trametes versicolor*) (20.1).

Among the dilution treatments,  $D_2$  (0.2% N, undiluted) recorded the lowest (18) kappa number and  $D_1$  (control) registered the highest (22) kappa number.

The interaction between the cultures and dilution treatments showed that  $F_1D_2$  (undiluted culture of *P.c* at 0.2% N level) registered the lowest kappa number of 17.5 followed by  $F_1D_3$  (2 fold diluted culture of *P.c* at 0.2% N level),  $F_1D_4$  (4 fold diluted culture of *P.c* at 0.2% N level) and  $F_2D_2$  (undiluted culture of *T.v* at 1% N level) and all the above were on par with each other.

#### Chlorine stage pulp

While considering the fungal cultures,  $F_2$  (*Trametes versicolor*) recorded the lowest kappa number of 18.8 followed by  $F_1$  (*Phanerochaete chrysosporium*) of 19.7 kappa number and both were significantly different from the other.

With regard to the dilutions of suspension cultures,  $D_2$  (undiluted at 0.2% N) registered the lowest kappa number, followed by  $D_3$  (2 fold diluted at 0.2% N) and  $D_5$  (undiluted, 1% N) and they were on par with each other.

## **EP** stage pulp

Among the white rot fungal cultures,  $F_1$  (*Phanerochaete chrysosporium*) recorded the lowest kappa number of 11.5 and  $F_2$  (*Trametes vericolor*) registered the highest kappa number (12.7).

The interaction between, fungal cultures and dilutions of suspension cultures revealed that,  $F_1D_2$  (undiluted suspension culture of *P. chrysosporium*) recorded the lowest kappa number of 9.5 which was significantly different from others. The interaction between days of incubation showed that  $F_1$  (*P. chrysosporium*) on the 10<sup>th</sup> day recorded the lowest kappa number and was significantly superior to the rest.

#### Hypo stage pulp

Regarding hypo stage pulp, the lowest kappa number of 6.2 was noticed after 10 days of incubation and the highest of 7.4 on the  $5^{\text{th}}$  day.

The culture  $F_1$  (*Phanerochaete chrysosporium*) recorded the lowest kappa number of 6.2 and was significantly different than  $F_2$  (*Trametes versicolor*) with kappa number of 7.4.

Regarding the interactions, culture  $F_1$  (*P. Chrysosporium*) under  $D_2$  (undilution, 0.2% N level) recorded the lowest kappa number of 4.0 and was significantly superior to  $F_1D_1$  (control) with kappa number of 9.0.

| Treatments            | S1        |    | S  | 52 | <b>S</b> 3 |    | S4         |    |
|-----------------------|-----------|----|----|----|------------|----|------------|----|
| Treatments            | <b>F1</b> | F2 | F1 | F2 | F1         | F2 | <b>F</b> 1 | F2 |
| <b>D</b> <sub>1</sub> | 22        | 22 | 16 | 16 | 20         | 20 | 9          | 9  |
| D <sub>2</sub>        | 16        | 18 | 9  | 10 | 19         | 19 | 6          | 5  |
| D3                    | 17        | 19 | 9  | 10 | 20         | 19 | 7          | 6  |
| D4                    | 17        | 20 | 10 | 12 | 20         | 20 | 7          | 7  |
| D5                    | 18        | 19 | 10 | 12 | 20         | 19 | 7          | 6  |
| D <sub>6</sub>        | 19        | 20 | 11 | 13 | 20         | 19 | 8          | 7  |
| D <sub>7</sub>        | 19        | 20 | 11 | 14 | 20         | 20 | 8          | 8  |
| Mean                  | 18        | 20 | 11 | 12 | 20         | 19 | 7          | 7  |

 Table 1 Influence of white rot fungal extracts and Nitrogen nutrition on the kappa number of the paper pulp

### Residual chlorine content of pulps of various stages after the incubation period

# **Chlorine stage**

At the end of experimental period, the residual chlorine content of the pulp was the highest of 48 % under  $D_1$  (control) followed by 46.5 % in  $D_7$  (4 fold dilution at 1% N level) and both were on par with each other.

Among the two cultures  $F_1$  (*Phanerochaete chrysosporium*) registered the highest residual chlorine content of 45.4 % followed by  $F_2$  (*Trametes versicolor*) of 43.6

# EP stage pulp

Among the cultures  $F_1$  (*Phanerochaete chrysosporium*) recorded the highest residual chlorine content of 846.2 ppm and the lowest value of 658.4 ppm was recorded under  $F_2$  (*Trametes versicolor*).

With respect to treatments,  $D_1$  (control) recorded the highest residual chlorine content of 950 ppm. The lowest value of 650 ppm was recorded by  $D_7$  (1% N, 4 fold dilution).

Regarding the interaction between cultures and dilutions, the highest residual chlorine content of 950 ppm was recorded in  $F_1D_1$  (*Phanerochaete chrysosporium*, control) and  $F_2D_1$  (*T. versicolor*, control). The lowest residual chlorine content 550 ppm was observed in  $F_2D_2$  (*T. versicolor*, 0.2% N in undiluted culture suspension).

# Hypo stage pulp

In the hypo stage pulp, the maximum residual chlorine content of 44.5 ppm observed under  $F_1$  (*Phanerochaete chrysosporium*) and the maximum residual chlorine content of 42.3 ppm was registered under  $F_2$  (*Trametes versicolor*).

Among the dilutions of suspension cultures,  $D_1$  (control) recorded the highest residual chlorine content (47 ppm).  $D_2$  (0.2% N undiluted suspension) recorded the lowest residual chlorine content of 40.5 ppm followed by  $D_5$  (1% N, undiluted suspension) and both were on par with each other.

| Treatments     | S2 (%)    |    |      | <b>S3 (ppm)</b> |     |      | S4 (ppm) |    |      |
|----------------|-----------|----|------|-----------------|-----|------|----------|----|------|
|                | <b>F1</b> | F2 | Mean | F1              | F2  | Mean | F1       | F2 | Mean |
| $D_1$          | 48        | 48 | 48   | 950             | 950 | 950  | 47       | 47 | 47   |
| $D_2$          | 43        | 39 | 41   | 750             | 550 | 650  | 42       | 38 | 40   |
| D <sub>3</sub> | 44        | 43 | 44   | 783             | 588 | 686  | 44       | 41 | 43   |
| D4             | 44        | 44 | 44   | 840             | 630 | 735  | 46       | 43 | 45   |
| D5             | 45        | 41 | 43   | 835             | 590 | 713  | 42       | 39 | 41   |
| $D_6$          | 47        | 44 | 46   | 856             | 623 | 740  | 44       | 43 | 44   |
| D7             | 47        | 46 | 47   | 910             | 678 | 794  | 47       | 45 | 46   |
| Mean           | 45        | 44 | 45   | 846             | 658 | 752  | 45       | 42 | 43   |

| Table 2 Residual chloride concentration of pulps of different stages as influenced by |
|---------------------------------------------------------------------------------------|
| white rot fungal extracts                                                             |

The supernatant enzymatic extract of the *Trametes versicolor* culture was more effective than that of the other white-rot fungi examined with respect to dechlorination of bleached kraft pulp at EP stage of the bleaching process. This could be due to the fact that the laccase enzyme from *Trametes versicolor* uses oxygen as an electron acceptor during laccase dependent oxidation reactions. The higher amount of dissolved oxygen present in the EP stage pulp favoured dechlorination (Kirk *et al.*, 1987; Yarapolov *et al.*,1994). This is in agreement with the findings of Unal and Kolonkaya (2001) according to whom, the dechlorination activity of *Trametes versicolor* was more than that of the other fungi examined.



Fig 1 Bleaching of Thickener pulp using Phanerochaete chrysosporium

Fig 2 Bleaching of EP stage pulp using Phanerochaete chrysosporium



### Conclusion

Pulp mill bleaching units are the most polluting sections in pulp and paper industries which have recently undergone enormous modifications to minimize their environmentally negative impacts (Okan *et al.* 2015, Ferre *et al.* 2011). The bleaching process stage of the pulp mill produces numerous organochlorine compounds that remain in the bleaching unit wastewater. According to Sharma *et al.* 2014 these organochlorine compounds cause genetic damages. The chlorine-free pulp bleaching applications has gained importance over the last decade in order to eliminate the deleterious effects of organochlorine compounds (Sharma *et al.* 2015). Thanks to their intensive lignin degrading potential with rich enzymatic actions, the white rot fungi have attracted extensive interest.

Thus, in this present study, using elite fungal enzymatic extracts for eco - friendly bio bleaching of kraft pulps had been undertaken, which would have industrial application.

# References

Kirkpatrick, N., I.D. Reid, E. Ziomek, C. Ho and M.G. Paice. 1989. Relationship between fungal biomass production and the brightening of hardwood kraft pulp by *Coriolus versicolor*. *Appl. Env. Microbiol.*, 55: 1147-1152.

TAPPI Standard T 236. 1976. Technical Association of the pulp and paper Industry, Atlanta.

Kirk, T.K. and R.L. Farrell. 1987. Enzymatic "combustion", the chemical degradation of lignin. *Annu.Rev.Microbiol.*, 41: 465-505.

Yarapalov, A.I., O.V. Slarobogatko, S.S. Vartanov and S. D. Varfolome yev. 1994. Laccase properties. Catalytic mechanism and applicability. *Appl. Biochem. Biotechnol.*, 49 : 257-279.

Unal, A. and N. Kolankaya. 2001. Dechlorination of bleached kraft pulp by laccase enzyme produced from some white rot fungi. *Turk. J. Biol.*, *25* : 67-72.

Okan, O.T., Deniz, I and S. Tiryaki. 2015. Application of artificial neural netmowrks for predicting tensile index and brigthness in bleaching pulp. *Maderas- Cienc Tecnol* 17(3): 571-584.

Ferre, A., Rosal, A., Valls, C., Roncero, B and A. Rodrigez. 2011. Modelling hydrogen peroxide bleaching of soda pulp from oil-palm empty fruit bunches. *Bioresources* 6: 1298-1307.

Sharma, A., Thakur, V.V., Shrivastava, A., Jain, R.K., Mathur, R.M., Gupta, R and R.C. Kuhad, 2014. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. *Bioresour Technol* 169:96-102.

Sharma, P., Sood, C., Singh, G. and Capalash, 2015. An eco-friendly process for biobleaching of eucalypts kraft pulp with xylanase producing *Bacillus halodurans*. *Journal of Cleaner Production* 87:966-970.