Enhanced Security using RSA Algorithm in Cloud Computing

Dr. Sonia Sharma¹, Ashutosh Kumar²

¹Professor & Head, Department of Computer Science and Engineering, MIMIT Malout

²Research Scholar, Department of Computer Science and Engineering, MIMIT Malout

Abstract: The cloud computing has a very important aspect i.e., the security and the quality of service from cloud service providers. However, cloud computing poses many new security challenges which haven't been well investigated. This paper specializes the issues referring to the cloud data storage methods and security within the virtual environment. In this paper, a technique for suggesting data storage and security within the cloud system using combination of public-key and private-key cryptosystem RSA has been implemented ^[5]. Further, it describes the safety services includes key generation, encryption and decryption within the virtual environment.

Keywords—RSA algorithm, encoding, Cloud Computing, Data Security, Data Decryption

I. Introduction

In the modern distributed era various services offered on the web are a standard hosting system. But within the normal hosting system storage and usage are fixed. Cloud computing imposes a replacement model for computing and the issues like compute, storage, software. A development environment is being provided and the allocation and reallocation of resources is completed wherever storage is needed and virtualized it. It satisfies the on-demand needs of the user. For the organization, the cloud offers data centres to maneuverer their data globally. It removes the usages of local nodes for supporting their data and also cloud supports upgradable resources on the net. Cloud Service Providers maintains Computing resources and data automatically via software^[6]. Cloud Computing is that the key thrust in many companies but the key concern is the safety of their data within the cloud. Securing data is sometimes of being vital due to the critical nature of cloud. Henceforth, the priority regarding data privacy and security are solving a barrier to the broader the upgrade of cloud computing services. Data Security must be imposed on data by using encryption strategies to understand secured data storage and access. The cloud infrastructure is even more reliable and powerful than personal computing, but an oversized range of internal, external threats for data stored. Since the information don't seem to be stored within the client area, implementing security measures can't be applied directly. During this work, the RSA algorithm is implemented before storing sensitive data within the cloud.^[1] When the authorized user requests the information for usage then data decrypted and provided to the user. In this paper, a way for Cloud ADPS by providing data storage and securing Cloud automatic processing system using RSA algorithm^[8] and some important security services including key generation, encryption and decryption are provided in Cloud automatic data processing has been proposed.

II. Cloud Computing

Cloud computing is an emerging paradigm, which mainly concentrates to supply dynamic, on-demand scalability of virtualized recourse to line of users. Scalability and virtualization are the two key factors

of the cloud environment. because of the accessibility of the cloud computing services many researchers are focus on this area.

III. Cloud Architecture and Storage Architecture—

- A. *Cloud Architecture*: It typically involves multiple cloud components communicating with one another over application programming interfaces, usually web services. This is reverted to the clients where cloud applications can be accessed by software applications or web.
- *B. Cloud Storage Architecture*: High-level architecture description of cloud data storage services illustrated in Fig. 1. The architecture consists of 4 different entities: data owner, user, cloud server (CS), and Third-party Auditor (TPA)^[7]. The access of cloud storage security behalf of user, TPA is the trusted entity.

Fig. 1. The given is a sample model of cloud architecture which defines a cloud storage and infrastructure being using its services and the flow of data through the servers.

IV. Cloud Computing Service and Deployment Models

a. Service Models

Cloud computing separated into three service categories:

Fig. 2. The given is the service model description of cloud and their application.

Infrastructure as a service (IaaS) is a part of cloud computing resources that is virtualized. The hardware, software, servers, storage and other infrastructure components in IaaS are being hosted by a third-party provider on behalf of their users. Users' applications are also being provided by IaaS and handles tasks covering system maintenance backup and resiliency planning. IAAS platforms offer

highly scalable resources that can be adjusted on-demand to make it working for workloads that are temporary, experimental or changed unexpectedly. Other characteristics of IAAS environments covers dynamic scaling, desktop virtualization, the automation of administrative tasks and policy-based services.^[3]

Platform as a service (PaaS) is also a cloud computing model that delivers applications. During a PaaS model, cloud provider delivers hardware and software tools i.e., being hosted by its own infrastructure. Actually, they are used for the application development as a service for users. Hence it leads to freeing PaaS users from putting in place in-house hardware and software to develop or run a replacement application. A PAAS provider, however, supports all the underlying computing and software; users only must login and start using the platform-usually through a web browser interface. ^[4] PAAS providers then charge for that access on a per-use basis or monthly basis.

Software as a service (SaaS) is a part of software distribution model from where applications are hosted by service provider and made available online for the customers ^[2]. SAAS has become an increasingly prevalent delivery model as underlying technologies that support Web services and service-oriented architecture (SOA) mature and new development approaches, like Ajax, become popular. SAAS is very similar to the ASP (Application service provider) and on-demand computing software delivery models. IDC identifies two minimal difference in delivery models for SAAS namely the hosted application model and so the software development model.

b. Deployment Models

- **i. Private cloud**: During this model cloud owner doesn't share their resources with the other organization. it's founded and maintained by a company. Security is often fine implemented during this model.
- **ii. Public cloud**: During this cloud model the resources are accessed by the final public. Everybody can access easily with this cloud so it's a less secure model. Cost of this cloud isn't expensive. This model requires a large investment these are owned by large organizations like Microsoft, Google or Amazon.
- **iii. Community cloud**: A cloud shares two or more several organizations or companies for his or her requirements. Usually employed in school or university campus.
- iv. Hybrid cloud: This sort of cloud uses one or more cloud model combinations for better use.

Fig. 3. Cloud model showing the composition of various service models and deployment models

V. The Proposed Methodology

The area of cryptography and cryptanalysis together are referred to as cryptology. Cryptanalysis used many encryptions and decryption techniques like Caeser cipher, Monoalphabetic cipher, Play fair cipher, Hill Cipher. These techniques possess the Brute Force Attack means the attacker tries every possible key to induce the first text to avoid this problem public key cryptography used. RSA is widely used Public-Key algorithm. RSA stands for Ron Rivest, Adi Shamir and Len Adleman, who first publicly described it in 1977.^[9]

In this proposed work, it is used for RSA algorithm to encrypt the information to produce security in order that only the concerned user can access it by securing the info as well as cipher.

RSA algorithm is that the public-key cryptography, within which both public and also the private keys are accustomed secure data within the cloud. the event of the general public key cryptography is greatest and maybe it provides a radical departure. it's also referred to as the Asymmetric algorithm because of the employment of two key together with a secret key. during this scheme, the plain text and cipher text are integers between 0 and n-1 for a few n. A typical size for n is 1024 bits. ^[3]

RSA is a block cipher during which every message is mapped to an integer. RSA consists of Public-Key and Private-Key^[1]. In this Cloud environment, Pubic-Key is understood to any or all, whereas Private-Key and encrypted cipher key is thought only to the user who originally owns the info^[10]. Thus, encryption is finished by the Cloud service provider and decryption is finished by the Cloud user or consumer.

Once the information is encrypted with the Public-Key, it may be decrypted with the corresponding Private-Key only.

RSA algorithm involves three steps:

- Key Generation
- Encryption
- Decryption

Key generation: Before the information is encrypted Key generation should be done. This process is finished between the Cloud service provider and therefore the user. ^[2]

Key generation algorithm Steps:

- 1. Choose two distinct prime numbers a and b. For security purposes, the integers a and b should be chosen at random and should be of similar bit length.
- 2. Compute n = a * b.
- 3. Compute Euler's totient function, $\emptyset(n) = (a-1) * (b-1).$
- 4. Chose an integer e, such that $1 < e < \emptyset(n)$ and a greatest common divisor of e, $\emptyset(n)$ are 1. Now, e is released as Public-Key exponent.
- 5. Now determine d as follows:
- $d = e^{-1} \pmod{\emptyset(n)}$ i.e., d is multiplicate inverse of e mod $\emptyset(n)$.
- 6. d is kept as Private-Key component, so that $d * e = 1 \mod \emptyset(n)$.
- 7. The Public-Key consists of modulus n and the public exponent e i.e, (e, n).
- 8. The Private-Key consists of modulus n and the private exponent d, which must be kept secret i.e., (d, n).

Encryption algorithm: Encryption is the process of converting original plain text (data) into cipher text (data). ^[9]

Steps:

- 1. The cloud service provider should give or transmit the Public- Key (n, e) to the user who wants to store the data with him or her.
- 2. User data is now mapped to an integer by using an agreed-upon reversible protocol, known as padding scheme.
- 3. Data is encrypted and the resultant cipher text(data) C is $C = m^e \pmod{n}$.
- 4. This cipher text or encrypted data is now encrypted again with the key (n, e) and being stored with the Cloud service provider.

Decryption algorithm:

Decryption is the process of converting the cipher text(data) to the original plain text(data). ^[3]

Steps:

- 1. The cloud user requests the Cloud service provider for the data.
- 2. Cloud service provider verifies the authenticity of the user and gives the encrypted cipher i.e., cipher.
- 3. The Cloud user then decrypts the cipher using values (d, n) first and hence the data by computing, $m = C^d \pmod{n}$.
- 4. Once m is obtained, the user can get back the original data by reversing the padding scheme.

VI. Experimental results and analysis

One of the experimental results shown here with the sequence of sections.

Key generation part:

The first part of key generation is to encrypt the original message into some integral byte code.

Fig. 4. Encrypted data

After the encryption of the message, two prime numbers are being chosen randomly to avoid the complication of attacking. Once the prime number is selected, p1*p2 is calculated according to the algorithm of RSA. Hence Euler's Totient is computed.

🖾 C:\Windows\System32\cmd.exe			×	i.
Prime 1: 23499525839260789914620668480086255510357717524625055900767035216663949518851295023519762797579434 82077908751353114018463055430228269525550023147931404991930753849364225312283554601956033296918936751857367 14728061893925567735975379824321498940117735663115537148345351331152312885798327775547204790102623179106609 48875925600628200648866053216561478957235068611517774707659391339820496966405010555202150973620261014918598 74155302922297975497525916055645487317081840810384473332282641245275504437963639060154515379444277222276600 06333387574525714918111107	44225 25143 51919 80236 58737	900464 988650 766309 438010 340750	4323 9116 5038 5024 9479	^
Prime 2: 18658041097592580492109386409099665423448982209841038869230387923659176296865671061927792001032112 6646856264882091669639660887579993612852616865720570176485615858699892466822306483329221036936826018670226 48394208331334426641493544944410827875780943337528338259641933775794642581867731193700653529941906429706738 0363731162278178794633161475980352356064896640469011273211193992059629973177877400407490667500064075067152 90048252648394852809678235623467500963940098724050696133925516927725279727428421387894066612863265578146834 41962691573017120604885833	70227 55906 85046 53185 45291	2116786 5469296 5294059 5175139 163682	5657 9415 9550 9864 2369	
phi p1 * p2: 438455118882866594913841954218077974355279405436235719190571578036114717758634729283028743887 6208817230264326839312510429992140083035866964424697432225631121819390372677493637071557582334411683711052 03644702221274534486093644612469639415448474543860605869701956749031114269140848939777012855117703900151142 74807163703492198423641881037714818025643119852985372430566916392084336075158417667266263525852333468222079 90772502382699507848404080863303166498554011730445439220291650994782594266182215958316165579435628222311367 73585331427923069592878242965119813231683477739165331901384191125193052583231022190927682564329178033214012 6866866965341403475556276306423052810079343859687425474528973953251982043990952675038469608151767840226558 77738234123127221044206088840686073973246811945898911791127995128132742759307499979727130871590581782439064 18701134219639299644283385343983244692732881959423954162183285509866674757673674440361082163386732531562177 8274388872941252637785458756873771168221250192	58671 15515 24973 96195 23059 24395 59981 57077 44357 72971	539593 5191476 5539967 5539967 5956549 5911549 215482 215482 386822 386822 379419	3681 9549 9374 7955 5455 5060 3494 2463 3795 9158	
p1 * p2: 4384551188828665949138419542180779743552794054362357191905715780361147177586347292830287438875867 8172302643268393125104299921400830358669644246974322256311218193903726774936370715575823344116837110521551 4702221274534486093644612469639415448474543860605869701956749031114269140848939777012855117703900151142497 7163703492198423641881037714818025643119852985372430566916392084336075158417667266263525852333468222079619 250238269950784840408868303166498554011730445439220291650994782594266182215958316155794356282223113623055 53314279230695928782429655413889010520114432326324502760503345311195805756831386276567957324092913711821004 4184106431285737048227778232268407942035239934536801830501450571191507477395874748328481322744596618609434 83206500268454465569891870683045598634183979915024327970736970203761091081701485798397266770492148724565290 1671089187585632731221212920173859198788625662561816306835478294821633705213292331298838572419628031835012 23676412524555339254208996901729758049234762150840449935049052110264523357560220910900050406531360426631176 830275791695922633754836021314003744247131	15395 51914 31551 55399 99565 44563 78442 90766 22489 96101	5936816 705496 503747 6679555 6454557 6005405 0031886 754246 9139717 734388	5208 9364 7480 9077 7358 5478 9209 5587 7460 8697	

Fig. 5. Generation of random prime numbers and calculating values for keys

Encryption part:

The generation of public key and private key from the cipher generated by encrypting message. These keys emerged from the prime numbers chosen and the value generated as e, n,d.

🖭 C:\Windows\System32\cmd.exe	_		×
			^
PUDIIC Key: 3304500944095033403210032951/983/59/1/21055/0428191090/8340894322099030450081330/2/8251//8/0032	40300	051400	0030
16148580/65416960460/8/2664995/93168069//5506311/4/894616344590/6/65653934/6681234430462850091363884024/532	6025	288784	1340
0664693030838652542980/3822215/4962385444839/994525290401/8402052868431854/2010610296133180814949424885//	49951	15006.	3057
095/519145622363654/45100849939325816519/551906411/812304/122143/408/93300000013490348/9/614883428545/43202	67796	035399	9797
6/3180258205195250/3/150615125010352031316/42916529/44024645600984/80443865/2352641/41431619499315468565534	9276	513010	9896
38102658306782225085084570923898916072861065359577825171508404802974547133014939693620672798766241924879836	33207	774849	9056
91812833537980412600665077956397875080599770570429028119109698679628084076103634559108139245258611888386725	53022	209524	1387
61193188061781964561374567353908763697795472070329822682569474920967383519936500043920441737937408874392726	20850	58448	2147
67047076172538358739704478521314549040559904411690944811471341732524214194898122675847162984778788120095227	46316	55602	2249
73937118249264553889288624685286397558720429420467555964334498367121922332595320189242565900507608200170343	7768	30387	7596
576654514839561072850460904094913199739043259			
Private key: 1925151437440136252987923884838293247001742308140216288349113518720006632093380608969199046972	57956	904469	9878
63246538241650466184795401029082230574245249334869216927396320553904722446587689932690310826222191200649739	45207	70937	5195
0157952156542275370666157304734336096428033589420175972941489725743484943681693030841816268802384654144757466666666666666666666666666666	24711	162939	9701
1877716570753620788646125333348183191393683538276605917962267878650584682168903631543241708056437271784239936365643727178423993636363636643727178423993636363666437271784239936366666666666666666666666666666666	60490	59230	3706
86202990623395849896058508712584064117505967312400330014242294411664188173111615106852168146765599776137954	97908	88796	1345
01296196673829571254357689193083813807978978863460026882434613754964038708686978523826289703462654651710395	40662	283759	9093
93725449388569705121803852806304037235040400241489976738391981159398405648221463945007264565952344384642697	21609	911999	9934
48457275048394726588244412857385354380091458985223091554891395495806129103945113117389308727183141021868524	29866	01135	3201
24674190431562105978905163215525981367545673615830838610251662844599300274796572765789519000554606744924736	57656	54013	2071
55204538380498043874914619496618348544188995377327085133918333945181064491090412822100289789719685536557914	59748	875296	9289
5746092310109731108966422475110384869277240259			

Fig. 6. Generated private and public key component

The encrypted cipher which is being used further in decryption part for the decryption of the cipher so that the original data can be retrieved.

🖾 C:\Windows\System32\cmd.exe			\times
			~
Encrypted Cipher : 415723605465144630693086019134442024032851880009894788150934525975313367787032966925944	7658	921178	195
9302113906763646509382674385975824580219448279476042670285844222062217755296453589232527892012346259000895	4972	736985	623
9629081476635704271356247572462011115416427802829803915530276465323444616075162963450168376221372061198943	3380	540339	136
72580637445586702546339517387031498802453432016242568076209230591847459719272956194515459782221003818661120	5858	695440	029
679204493783931557950319813417694061996544100249415034963342510013125994937883786694763554612470511240056126463646464646666666666666666666666666	03684	487246	860
7322906959989042562584823050008801692069597662149168540061204376805019529437950258497424597865355049399901	7048	318109	079
151883414453706817617351282245299979638260837010044803658187248616876761177850940301607225468253016536297076666666666666666666666666666666666	9551	987287	812
9878723138123055278457558700496836787554215314100115670648362078099403805377523207546558036144565339697506	2324	328772	310
57197773823474519085666005848869546478497662342130368205478901924159051042507331077156823516108524902616569366660666666666666666666666666666666	3730	077559	647
5728850008851016775087197440801910213431918494707503620103262146345664449348230813354611209785121167910973666666666666666666666666666666666666	641476	536081	.645
2284231256105437649606446493237431481132728565690086			

Decryption part:

Finally, the data is being decrypted using the key and the cipher text.

GS. C:\Windows\System32\cmd.exe				×
Ciphertext: 2040803853316346938643379911159564827783572008058929269042193217527026445036762	73519639260169	043507	7585601	516 ^
0537828507203761340002077073437771309118098128741690395262172548981154261116696271848992383	81263886101019	213707	184696	469
3862282668632072917456106530562861648858191583812956948504660440721119581736235750208842213	46741036357633	815936	5329636	757
2459699459245698250534248516942148870401754836822920953016209971781860670037559559452125136	63191851766090	622412	349478	271
1796095795474402657277611613760512891775593506159733908565112329685291697963727692262861459	60275597827520	547075	236296	256
9197021474696648875116344492518828347958154135877553574076297942377005688037819728362757692	04773475912629	453375	816340	936
5681404759241417527523661283093268800601247983949576734523918082030696483305576274992943113	97486501372539	272446	871208	560
5567315523186656657078743794103453745399151615533547306935038327531479996865175318728013074	73313385877402	852654	430956	617
3620783772473414264009660834454217683572895919609316323336481290358464364042510914494671702	3080124302707	538475	318850	720
2865409733729683698111170841243658459356367207135394124349099340340172023634064501250787871	57379467326642	835967	105467	857
208904814215051357682529353177745964716783364				
Decrypted message(number form): 76242082201690550726297329098725508417130379285346900209214	17820257			
Decrypted message(string): Hello World! by Ashutosh Jha				

VII. Conclusion

Cloud Computing remains a replacement and evolving paradigm where computing is thought to be ondemand service. Once the organization decides to maneuverer to the cloud, it loses control over the info. Thus, the quantity of protection needed to secure data is directly proportional to the worth of the information. Cloud Security basically depends on the trusted computing and cryptography. Thus, in this proposed work, only the authorized user can access the information. whether or not some intruder (unauthorized user) gets the info accidentally or intentionally if he/she captures the info also, he/she can't decrypt it and obtain back the initial data from it. Henceforth, data security is provided by implementing the RSA algorithm. In this work, performance supported different parameters like space complexity, time complexity and throughput has been observed. we've got observed each efficiency parameter intimately by varying message packet length and a non-public key length of our encryption scheme. On viewing the results, it good to say that the RSA encryption algorithm is a feasible solution for secure communication in cloud computing.

References—

- [1] Shreya Srivastav, Shalika "Improving data security in cloud computing by using RSA and Digital Signature Algorithm "A special issue ofIJTR(ISSN 2278-5787) SERB sponsored two day national conference on " Current trends in scientific research for engineering applications (NCCSE-2015)" dated march 20-21, 2015
- [2] P.suresh "Secure Cloud Environment Using Rsa Algorithm", International Journal of Computer Science and Information Technology, e-ISSN: 2395 -0056, p-ISSN: 2395-0072, Volume: 03 Issue: 02 | Feb-2016
- [3] Santosh Kumar Singh, Dr. P.K. Manjhi, Dr. R.K. Tiwari, "Data Security using RSA Algorithm in Cloud Computing", International Journal of Advanced Research in Computer and Communication Engineering, ISSN (Online) 2278-1021, Vol. 5, Issue 8, August 2016.
- [4] Sudhansu Ranjan Lenka, Biswaranjan Nayak, International Journal of Computer Science Trends and Technology (IJCST) – Volume 2 Issue 3, June-2014
- [5] Dr. Rajamohan Parthasarathy, Ms. Haw Wai Yee P, Mr. Seow Soon Loong, Dr. Leelavathi Rajamanickam, Ms. Preethy Ayyappan, IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 6 Issue 4, April 2019, ISSN (Online) 2348 – 7968
- [6] Dhaval Jha Vishva Tanna Ripal Patel, " Data Security in Cloud using RSA" International Journal for Scientific Research & Development Vol. 2, Issue 04, 2014 | ISSN (online): 2321-0613
- [7] Shreya Srivastav, Neeraj Verma, M. Tech Scholar, Department of CSE, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 4, Issue 7, July 2015
- [8] Ms. Soumya.N.S, Mrs. Prabha.R, M.Tech Student, Computer Network Engineering, Associate Professor, Department of Information Technology, Volume IV, Issue X, October 2015 IJLTEMAS ISSN 2278 – 2540
- [9] Nasrin Khanezaei, Zurina Mohd Hanapi, "A Framework Based on RSA and AES Encryption Algorithms for Cloud Computing Services", IEEE, 58-62, 2014.
- Balkees Mohamed Shereek, ZaitonMuda, SharifahYasin, Faculty of computer science and information technology, IOSR Journal of Engineering (IOSRJEN)ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 02 (February. 2014), ||V6|| PP 01-08