ON WEAK FORMS OF β-OPEN AND β-CLOSED FUNCTIONS IN SMOOTH FUZZY TOPOLOGICAL SPACES

M. Palanisamy

Asistant Professor, Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Kanniyakumari-Dt

Abstract.

In this paper, we introduce and study two new classes of fuzzy functions by using the notions of r-fuzzy β -open sets and r-fuzzy β -closure operator called weakly r-fuzzy β -open and weakly r-fuzzy β -closed functions. The connections between these r-fuzzy functions and other existing r-fuzzy topological functions are studied.

2000 Math. Subject Classification: 54A40, 54C10, 54D10;

Keywords and Phrases: *r*-fuzzy preopen sets, *r*-fuzzy β -open sets, *r*-fuzzy weakly β -open functions, *r*-fuzzy extremely disconnected spaces, *r*-fuzzy quasi H-closed spaces.

1. Introduction and Preliminaries.

S^{ostak} [18] introduced the fuzzy topology as an extension of Chang's fuzzy topology [4] and developed in many directions [7, 8, 17]. In fuzzy topological spaces, a weaker forms of fuzzy continuity by many authors [1, 2, 3, 6, 20]. Kim and Park [9] introduced r- δ -cluster points and δ -closure operators in S^ostak fuzzy topological spaces. Park et al. [11] introduced the concept of fuzzy semi-preopen sets which is weaker than any of fuzzy semi-open or fuzzy preopen sets. In 1968, Velicko [19] studied some new types of open sets called θ -open sets and δ -open sets. In 1963, Levine initiated a new type of open set called semi-open set [10]. In 1993, Raychaudhuri and Mukherjee defined δ -preopen sets. In 2006, Shafei introduced fuzzy θ -closed [21] and fuzzy θ -open sets. Recently, M.Palanisamy [12] & [13] introduced r-fuzzy Z* -Continuity sets in fuzzy topological spaces in the sense of S^oostak's. In this paper, we introduce the concept of *r*-fuzzy β -

open sets and *r*-fuzzy β -closure operator called weakly *r*-fuzzy β -open and weakly *r*-fuzzy β -closed functions. The connections between these *r*fuzzy functions and other existing *r*-fuzzy topological functions are studied. Also, discuss about some characterizations and properties of these notions.

Throughout this article, we denote nonempty sets by X, Y etc., I = [0,1] and $I_0 = (0,1]$. For $\alpha \in 1$, $\overline{\alpha}(x) = \alpha$, $\forall x \in X$ A fuzzy point x_t for $t \in I_0$ is an element of I^X such that

$$x_t(y) = \begin{cases} t & if \quad y \text{ is equal to } x \\ 0 & if \quad y \text{ is not equal to } x. \end{cases}$$

Let $P_t(X)$ denote the set of all fuzzy points in X. A fuzzy point $x_t \in \mu$ iff $t < \mu(x)$. $\mu \in I^X$ is quasi-coincident with ν , denoted by $\mu q \nu$, if $\exists x \in X$ such that $\mu(x) + \nu(x) > 1$.

If μ is not quasi-coincident with v, we denoted $\mu q v$. If A is a subset of X, we define the characteristic function χ_A on X by

 $\chi_t(x) = \begin{cases} 1 & if \quad x \in A \\ & & \text{All notations and definitions will be standard in} \\ 0 & if & if \quad x \notin A. \end{cases}$

the fuzzy set theory.

Definition 2.2. [17]

A function $\tau: I^X \to I$ is called a fuzzy topology on X if it satisfies the following conditions:

(1)
$$\tau(\overline{0}) = \tau(\overline{1}) = 1$$
,

(2) $\tau(\vee_{i\in\Gamma}\nu_i) \ge \wedge_{i\in\Gamma}\tau(\nu_i)$, for any $\{v_i\}_{i\in\Gamma} \subset I^X$,

(3) $\tau(v_1 \wedge v_2) \ge \tau(v_1 \wedge v_2)$, for any $v_1, v_2 \in I^X$.

The pair (X,τ) is called a fuzzy topological space or S^ostak's fuzzy topological space or smooth topological space (for short, fts, sfts, sts).

Remark 2.3. [17]

Let (X,τ) be a fts. Then, for every $r \in I_0$, $\tau = \{v \in I^X : \tau(v) \ge r\}$ is a Change's fuzzy topology on X.

Theorem 2.4. [17]

Let (X,τ) be a sfts. Then for each $\mu \in I^X$, $r \in I_0$, we define an operator $C_\tau : I^X \times I_0 \to I^X$ as follows:

$$C_{\tau}(\mu, r) = \wedge \{ \upsilon \in I^X : \mu \le \upsilon, \tau(\underline{1} - \upsilon) \ge r \}..$$

For $\mu, \nu \in I^X$ and $r, s \in I_0$, the operator C_{τ} satisfies the following conditions:

(1) $C_{\tau}(\underline{0},r) = \underline{0},$

(2)
$$\lambda \leq C_{\tau}(\lambda, r),$$

- (3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r),$
- (4) $C_{\tau}(\lambda, r) \leq C_{\tau}(\mu, s)$ if $r \leq s$,
- (5) $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\mu, r).$

Theorem 2.5. [21]

Let (X,τ) be a sfts. Then for each $\mu \in I^X$, $r \in I_0$, we define an operator $I_\tau : I^X \times I_0 \to I^X$ as follows:

$$I_{\tau}(\mu, r) = \vee \{ \upsilon \in I^X : \mu \le \upsilon, \tau(\upsilon) \ge r \}..$$

For $\mu, \nu \in I^X$ and $r, s \in I_0$, the operator C_{τ} satisfies the following conditions:

(1)
$$I_{\tau}(\underline{1},r) = 1$$
,

(2) $\lambda \ge I_{\tau}(\lambda, r),$ (3) $I_{\tau}(\lambda, r) \land I_{\tau}(\mu, r) = I_{\tau}(\lambda \land \mu, r),$ (4) $I_{\tau}(\lambda, r) \le I_{\tau}(\mu, s)$ if $r \ge s,$ (5) $I_{\tau}(I_{\tau}(\lambda, r), r) = I_{\tau}(\lambda, r),$ (6) $I_{\tau}(\underline{1}-\lambda, r) = \underline{1}-C_{\tau}(\lambda, r)$ and $C_{\tau}(\underline{1}-\lambda, r) = \underline{1}-I_{\tau}(\lambda, r).$

Definition 2.6. [13]

A point x of X is called δ -cluster point of λ if $I_{\tau}(C_{\tau}(U,r),r) \wedge \lambda = \phi$, for everyopen set U of X containing x. The set of all δ -cluster point of λ is called δ -closure of λ and is denoted $\delta C_{\tau}(\lambda)$.

Definition 2.6.

A set λ is δ -closed if and only if $\lambda = \delta C_{\tau}(\lambda, r)$. The complement of a δ - closed set is said to be δ -open [13]. Then δ -interior of a subset λ of X is the union of all δ -open sets of X contained in λ .

Definition 2.8.

Let (X,τ) be a sfts. Then for each $\lambda \in I^X$, $r \in I_0$, λ is called

1. r-fuzzy preopen (resp. r-fuzzy preclosed) [15] set if $\lambda \leq I_{\tau}(C_{\tau}(\lambda, r), r)$,

$$(C_{\mathcal{T}}(I_{\mathcal{T}}(\lambda, r), r) \leq \lambda),$$

- 2. r-fuzzy α -open (resp. r-fuzzy α -closed) [15] set if $\lambda \leq I_{\tau}(C_{\tau}(I_{\tau}(\lambda, r), r), r), (C_{\tau}(I_{\tau}(C_{\tau}(\lambda, r), r), r) \leq \lambda),$
- 3. r-fuzzy β -open (resp. r-fuzzy β -closed) [15] set if $\lambda \leq C_{\tau}(I_{\tau}(C_{\tau}(\lambda, r), r), r))$ $(I_{\tau}(C_{\tau}(C_{\tau}(\lambda, r), r), r) \leq \lambda),$
- 4. r-fuzzy θ -open (resp. r-fuzzy θ -closed) [5] set if $\lambda = \theta I_{\tau}(\lambda, r)$,

 $(\lambda \leq \theta C_{\tau}(\lambda, r)),$

The family of all r-fuzzy preopen (resp. r-fuzzy α -open, r-fuzzy β -open, r-fuzzy θ -open) is denoted by PO(X) (resp. $\alpha O(X)$, eO(X), $\beta O(X)$, $\theta O(X)$.

Lemma: 2.1 [15]

Let λ, μ be two subsets of (X, τ) Then:

(1) λ is r-fuzzy δ -open if and only if $\lambda = I_{\tau}(\lambda, r)$,

(2) X -
$$\delta I_{\tau}(\lambda, r) = \delta C_{\tau}(X \setminus (\lambda, r))$$
 and $\delta I_{\tau}(X \setminus (\lambda, r)) = X - \delta I_{\tau}(\lambda, r)$,

(3) $I_{\tau}(\lambda, r) \leq \delta C_{\tau}(\lambda, r)$ (resp. $\delta I_{\tau}(\lambda, r) \leq I_{\tau}(\lambda, r)$)), for any subset λ of X,

(4)
$$\delta - C_{\tau}(\lambda \lor \mu, r) = \delta - C_{\tau}(\lambda, r) \lor \delta - C_{\tau}(\mu, r),$$

 $\delta - \mathbf{I}_{\tau}(\lambda \lor \mu, r) = \delta - \mathbf{I}_{\tau}(\lambda, r) \lor \delta - \mathbf{I}_{\tau}(\mu, r),$

Definition

A space X is called r-fuzzy extremally disconnected (E.D) [19] if the closure of each r-fuzzy open set in X is open. A space X is called r-fuzzy β -connected [1, 14] if X cannot be expressed as the union of two nonempty disjoint r-fuzzy β -open sets.

Definition

A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called:

- (i) r-fuzzy β -continuous [13] if for each r-fuzzy open subset μ of $Y, f^{-1}(\mu) \in \beta O(X, \tau)$.
- (ii) *r*-fuzzy strongly continuous [3, 8], if for every fuzzy subset λ of $X, f(C_{\tau}(\lambda)) \leq f(\lambda)$.
- (iii) *r*-fuzzy weakly open [15] if $f(\eta) \le I_{\tau}(f(C_{\tau}(\eta, r), r)))$ for each *r*-fuzzy open subset η of *X*.
- (iv) r-fuzzy weakly closed [15] if $C_{\tau}(f(I_{\tau}(F,r),r)) \le f(F)$ for each r-fuzzy closed subset F of X.
- (v) r-fuzzy relatively weakly open [15] provide that $f(\eta)$ is r-fuzzy open in $f(C_{\tau}(\eta, r))$ for every r-fuzzy open subset η of X.

- (vi) r-fuzzy almost open, written as (a.o.S) [13] if the image of each r-fuzzy regular open subset η of X is r-fuzzy open set in Y.
- (vii) r-fuzzy preopen [13] (resp. r-fuzzy β -open, r-fuzzy α -open) if for each r-fuzzy open subset η of X, $f(\eta)$ is r-fuzzy preopen (resp. $f(\eta)$ is r-fuzzy β -open, f(U) is r-fuzzy α -open) set in Y.
- (viii) r-fuzzy preclosed [18] (resp. r-fuzzy β -closed, r-fuzzy α closed) if for each r-fuzzy closed subset F of X, f(F) is rfuzzy preclosed (resp. f(F) is r-fuzzy β -closed, f(F) is r-fuzzy α -closed) set in Y.
- (ix) r-fuzzy contra-open [13] (resp. r-fuzzy contra-closed [1], r-fuzzy contra β -closed) if $f(\eta)$ is r-fuzzy closed (resp. r-fuzzy open, r-fuzzy β -open) in Y for each r-fuzzy open (resp. r-fuzzy closed, r-fuzzy closed) r-fuzzy subset η of X.

2. Weakly *r*-fuzzy β -open functions.

In this section, we define the concept of r-fuzzy weak β -openness as a natural dual to the r-fuzzy weak β -continuity due to and Noiri [14] and we obtain several fundamental properties of this new function.

Definition 2.1.

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be *r*-fuzzy weakly β -open if

 $f(\eta) \le \beta(I_{\tau}(f(C_{\tau}(\eta, r), r))))$ for each *r*-fuzzy open set η of *X*.

Clearly, every *r*-fuzzy weakly open function is *r*-fuzzy weakly β -open and every *r*-fuzzy β -open function is also *r*-fuzzy weakly β -open, but the converse is not generally true. For,

Example 2.2.

Let $X = Y = \{a, b, c\}$ and $\mu_1, \mu_2 \in I^X$ $\mu_2, \mu_3 \in I^Y, \mu_5 \in I^Z$ defined as follows: $\mu_1(a) = 0.4, \mu_1(b) = 0.5, \mu_1(c) = 0.6,$ $\mu_2(a) = 0.4, \mu_2(b) = 0.5, \mu_2(c) = 0.4,$

$$\mu_3(a) = 0.6, \mu_3(b) = 0.5, \mu_3(c) = 0.4,$$

 $\mu_4(a) = 0.4, \mu_4(b) = 0.5, \mu_4(c) = 0.6, \mu_5(a) = 0.6, \mu_5(b) = 0.5, \mu_5(c) = 0.4$

Define fuzzy topology $\tau, \sigma, \eta = I^X \to I$ as follows

$$\tau (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{1}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{2}, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$
$$\sigma (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{3}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{4}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{3} \lor \mu_{4}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{3} \lor \mu_{4}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{3} \land \mu_{4}, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

$$\eta (\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} & \text{if } \lambda = \mu 5, \\ 0 & \text{if } \cdot \text{otherwise} \end{cases}$$

(i) Then the identity mapping $id_X : (X, \tau) \to (Y, \sigma)$ is $\frac{1}{2}$ - fuzzy weakly β -open set but not $\frac{1}{2}$ -fuzzy weakly open.

(ii) Then the identity mapping $id_X : (X,\tau) \to (Z,\eta)$ is $\frac{1}{2}$ fuzzy weakly β -open but not $\frac{1}{2}$ -fuzzy β -open

Theorem 2.3.

Let X be a r-fuzzy regular space. Then $f:(X,\tau) \to (Y,\sigma)$ is r-fuzzy weakly β -open if and only if f is r-fuzzy β -open.

Proof.

The sufficiency is clear.

For the necessity, let χ be a nonempty r-fuzzy open subset of X. For each x in χ , let η_X be an r-fuzzy open set such that $x \in \eta_X \leq C_\tau(\eta_X, r) \leq \chi$. Hence we obtain that $\chi = \lor \{\eta_X : x \in \chi\} = \lor \{C_\tau(\eta_X, r) : x \in \chi\}$ and, $f(\chi) = \lor \{f(\eta_X) : x \in \chi\} \leq \lor \{\beta I_\tau(f(C_\tau(\eta_X, r)) : x \in \chi\} \leq \beta_\tau(f(\lor \{C_\tau(\eta_X, r) : x \in \chi\}) = \beta I_\tau(f(\chi, r)).$

Thus f is r-fuzzy β -open.

Theorem 2.4.

For a function $f:(X,\tau) \to (Y,\sigma)$, the following conditions are equivalent :

(i) f is r-fuzzy weakly β -open.

(ii) $f(\theta I_{\tau}(\lambda, r)) \leq \beta I_{\tau}(f(\lambda, r))$ for every *r*-fuzzy subset λ of *X*.

(iii) $\theta l_{\tau}(f^{-1}(\mu, r)) \leq f^{-1}(\beta l_{\tau}(\mu, r))$ for every *r*-fuzzy subset μ of *Y*.

(iv)
$$f^{-1}(\beta C_{\tau}(\mu, r)) \le \theta C_{\tau}(f^{-1}(\mu, r))$$
 for every *r*-fuzzy subset μ of *Y*.

(v) For each $x \in X$ and each *r*-fuzzy open subset \mathcal{G} of *X* containing *x*, there exists a *r*-fuzzy β -open set η containing f(x) such that $\eta \leq f(C_{\tau}(\mathcal{G}, r))$.

(vi) $f(I_{\tau}(\omega, r)) \leq \beta I_{\tau}(f(\omega, r))$ for each *r*-fuzzy closed subset ω of *X*.

(vii) $f(\mathcal{G}) \leq \beta I_{\tau}(f(C_{\tau}(\mathcal{G}, r), r))$ for each *r*-fuzzy open subset \mathcal{G} of *X*.

(viii) $f(I_{\tau}(C_{\tau}(\vartheta, r), r)) \le \beta I_{\tau}(f(C_{\tau}(\vartheta, r), r))$ for each *r*-fuzzy preopen subset ϑ of *X*.

(X) If $f(\mathcal{G}) \leq \beta I_{\tau}(f(C_{\tau}(\mathcal{G},r),r))$ For each *r*-fuzzy α -open subset \mathcal{G} of *X*.

Proof. (i) \rightarrow (ii) : Let λ be any *r*-fuzzy subset of *X* and $x \in \theta I_{\tau}(\lambda, r)$. Then, there exists an *r*-fuzzy open set ϑ such that $x \in \vartheta \leq C_{\tau}(\vartheta) \leq \lambda$. Then, $f(x) \in f(\vartheta) \leq f(C_{\tau}(\vartheta, r)) \leq f(\lambda)$. Since *f* is *r*-fuzzy weakly β -open,

$$f(\vartheta) \le \beta I_{\tau}(f(C_{\tau}(\vartheta, r), r)) \le \beta I_{\tau}(f(\lambda, r))$$
. It implies that $f(x) \le \beta I_{\tau}(f(\lambda, r))$.

This shows that $x \in f^{-1}(\beta I_{\tau}(f(\lambda, r)))$. Thus $\theta I_{\tau}(\lambda, r) \leq f^{-1}(\beta I_{\tau}(f(\lambda, r)))$, and so, $f(\theta I_{\tau}(\lambda, r)) \leq \beta I_{\tau}(f(\lambda, r))$.

(ii) \rightarrow (i): Let \mathscr{G} be an *r*-fuzzy open set in *X*. As $\mathscr{G} \leq \mathscr{H}_{\tau}(C_{\tau}(\mathscr{G},r))$ implies, $f(\mathscr{G}) \leq f(\mathscr{H}_{\tau}(C_{\tau}(\mathscr{G},r),r)) \leq \beta I_{\tau}(f(C_{\tau}(\mathscr{G},r),r))$. Hence *f* is *r*-fuzzy weakly β -open.

(ii) \rightarrow (iii) : Let μ be any *r*-fuzzy subset of *Y*.

Then by (ii),
$$f(\theta l_{\tau}(f^{-1}(C_{\tau}(\mu, r), r))) \leq \beta l_{\tau}(\vartheta, r)$$
.

Therefore $\theta I_{\tau}(f^{-1}(\mu, r)) \leq f^{-1}(\beta I_{\tau}(\mu, r))$.

(iii) \rightarrow (ii) : This is obvious.

(iii) \rightarrow (iv) : Let μ be any r-fuzzy subset of Y. Using (iii), we have $X - \theta C_{\tau} (f^{-1}(\mu, r)) = \theta I_{\tau} (X - f^{-1}(\mu, r)) = \theta I_{\tau} (f^{-1}(Y - \mu, r))$ $\leq f^{-1} (\beta I_{\tau} (Y - \mu, r)) = f^{-1} (Y - \beta C_{\tau} (\mu, r)) = X - (f^{-1} (\beta C_{\tau} (\mu, r)).$

Therefore, we obtain $f^{-1}(\beta C_{\tau}(\mu, r)) \leq \theta C_{\tau}(f^{-1}(\mu, r))$.

(iv) \rightarrow (iii) : Similarly we obtain, $X - f^{-1}(\beta I_{\tau}(\mu, r)) \leq X - \theta I_{\tau}(f^{-1}(\mu, r))$,

for every *r*-fuzzy subset μ of *Y*, i.e., $\theta I_{\tau}(f^{-1}(\mu, r)) \leq f^{-1}(\beta I_{\tau}(\mu, r))$. . (i) \rightarrow (v) : Let $x \in X$ and ϑ be an *r*-fuzzy open set in *X* with $x \in X$. Since *f* is *r*-fuzzy weakly β -open. $f(x) \in f(\vartheta) \leq \beta I_{\tau}(f(C_{\tau}(\vartheta, r), r))$. Let $\eta = \beta I_{\tau}(f(C_{\tau}(\vartheta, r), r))$. Hence $\eta \leq f(C_{\tau}(\vartheta, r))$, with η containing f(x).

 $(v) \rightarrow (i)$: Let \mathscr{G} be an *r*-fuzzy open set in *X* and let $y \in f(\mathscr{G})$. It following from $(v) \eta \leq f(C_{\tau}(\mathscr{G}, r))$ for some η is *r*-fuzzy β -open in *Y* containing *y*. Hence we have, $y \in \eta \leq \beta I_{\tau}(f(C_{\tau}(\mathscr{G}, r), r))$. This shows that $f(\mathscr{G}) \leq \beta I_{\tau}(f(C_{\tau}(\mathscr{G}, r), r)),$ i.e., f is a r-fuzzy weakly β -open function.

$$(i) \rightarrow (vi) \rightarrow (vii) \rightarrow (viii) \rightarrow (ix) \rightarrow (i)$$
: This is obvious.

Theorem 2.5.

Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective function. Then the following statements are equivalent.

(i) f is r-fuzzy weakly β -open.

(ii) $\beta C_{\tau}(f(\vartheta, r)) \le f(C_{\tau}(\vartheta, r))$ for each ϑ is *r*-fuzzy open of *X*.

(iii) $\beta C_{\tau}(f(I_{\tau}(\omega, r), r)) \leq f(\omega)$ for each ω is *r*-fuzzy closed in *X*.

Proof. (i) \rightarrow (iii) : Let ω be a *r*-fuzzy closed set in *X*. Then we have $f(X - \omega) = Y - f(\omega) \le \beta I_{\tau} (f(C_{\tau}(X - \omega, r), r))$ and so $Y - f(\omega) \le Y - \beta C_{\tau} (f(I_{\tau}(\omega, r), r))$. Hence $\beta C_{\tau} (f(I_{\tau}(\omega, r), r)) \le f(\omega)$.

(iii) \rightarrow (ii) : Let \mathscr{G} be a *r*-fuzzy open set in *X*. Since $C_{\tau}(\mathscr{G},r)$ is a *r*-fuzzy closed set and $\mathscr{G} \leq I_{\tau}(C_{\tau}(\mathscr{G},r),r)$ by (iii) we have

 $\beta C_{\tau}(f(\vartheta,r)) \leq \beta C_{\tau}(f(I_{\tau}(C_{\tau}(\vartheta,r),r),r)) \leq f(C_{\tau}(\vartheta,r))\,.$

(ii) \rightarrow (iii) : Similar to (iii) \rightarrow (ii).

 $(iii) \rightarrow (i)$: Clear.

Theorem 2.6.

If $f:(X,\tau) \to (Y,\sigma)$ is *r*-fuzzy weakly β -open and *r*-fuzzy strongly continuous, then *f* is *r*-fuzzy β -open.

Proof. Let \mathscr{G} be an *r*-fuzzy open subset of *X*. Since *f* is *r*-fuzzy weakly β -open $f(\mathscr{G}) \leq \beta I_{\tau}(f(C_{\tau}(\mathscr{G}, r), r)))$. However, because *f* is *r*-fuzzy strongly continuous, $f(\mathscr{G}) \leq \beta I_{\tau}(f(\mathscr{G}, r))$ and therefore $f(\mathscr{G})$ is *r*-fuzzy β -open.

Example 2.7.

A *r*-fuzzy β -open function need not be *r*-fuzzy strongly continuous.

Let $X = \{a, b, c\}$, and let τ be the indiscrete topology for X. Then the identity function of (X, τ) onto (X, τ) is a β -open function (hence weakly β -open function) which is not strongly continuous.

Theorem 2.8.

A function $f:(X,\tau) \to (Y,\sigma)$ is *r*-fuzzy β -open if f is *r*-fuzzy weakly β -open and relatively *r*-fuzzy weakly open.

Proof.

Assume *f* is *r*-fuzzy weakly β -open and relatively *r*-fuzzy weakly open. Let β be an *r*-fuzzy open subset of *X* and let $y \in f(\beta)$. Since *f* is relatively *r*-fuzzy weakly open, there is an open subset η of *Y* for which $f(\beta) = f(C_{\tau}(\beta, r)) \wedge \eta$. Because *f* is *r*-fuzzy weakly β -open, it follows that $f(\beta) \leq \beta I_{\tau} (f(C_{\tau}(\beta, r), r))$. Then $y \in \beta I_{\tau} (f(C_{\tau}(\beta, r), r)) \wedge \eta \leq f(C_{\tau}(\beta, r)) \wedge \eta = f(\beta)$ and therefore $f(\beta)$ is *r*-fuzzy β -open.

Theorem 2.9.

If $f:(X,\tau) \to (Y,\sigma)$ is *r*-fuzzy contra β -closed, then *f* is a *r*-fuzzy weakly β open function.

Proof.

Let \mathcal{G} be an *r*-fuzzy open subset of *X*. Then, we have $f(\mathcal{G}) \leq f(C_{\tau}(\mathcal{G}, r)) = \beta I_{\tau}(f(C_{\tau}(\mathcal{G}, r), r))$. The converse of Theorem 2.9 does not hold.

Example 2.10.

A *r*-fuzzy weakly β -open function need not be *r*-fuzzy contra β -closed is given from Example 2.2(ii). Next, we define a dual form, called complementary *r*-fuzzy weakly β -open function.

Definition 2.11.

A function $f:(X,\tau) \to (Y,\sigma)$ is called complementary *r*-fuzzy weakly β --open (written as c.w. β .o) if for each *r*-fuzzy open set β of *X*, $f(Fr(\beta,r))$ is *r*-fuzzy β -closed in *Y*, where $Fr(\beta,r)$ denotes the frontier of β .

Example 2.12.

A *r*-fuzzy weakly β -open need not be *r*-fuzzy complementary weakly β -open.

Let
$$X = \{a, b, c\}, Y = \{a, b\}$$
 and $\mu_1, \mu_2, \mu_3 \in I^X$ $\mu_4, \mu_5, \mu_6 \in I^Y$ defined as follows:
 $\mu_1(a) = 0.4, \mu_1(b) = 0.6, \mu_1(c) = 0.6,$
 $\mu_2(a) = 0.4, \mu_2(b) = 0.5, \mu_2(c) = 0.6,$
 $\mu_3(a) = 0.6, \mu_3(b) = 0.6, \mu_3(c) = 0.6,$
 $\mu_4(a) = 0.6, \mu_4(b) = 0.6, \mu_4(c) = 0.5$
 $\mu_5(a) = 0.5, \mu_5(b) = 0.5, \mu_4(c) = 0.4$

$$\mu_6(a) = 0.5, \mu_6(b) = 0.4, \mu_4(c) = 0.4,$$

Define fuzzy topology $\tau, \sigma = I^X \to I$ as follows

$$\tau (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{1}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{2}, \\ \frac{1}{2} \text{ if } \lambda = \mu_{3}, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

$$\sigma (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \mu 4, \\ \frac{1}{2} \text{ if } \lambda = \mu 5, \\ \frac{1}{2} \text{ if } \lambda = \mu 6, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

Then the identity mapping $id_X : (X, \tau) \to (Y, \sigma)$ is $\frac{1}{2}$ -fuzzy weakly β -open but not $\frac{1}{2}$ -fuzzy complementary weakly β -open.

Example 2.13.

r-fuzzy complementary weakly β -open does not imply *r*-fuzzy weakly β -open.

Let
$$X = \{a, b\}$$
 and $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in I^X$ $\mu_1, \mu_2 \in I^Y$ defined as follows:
 $\lambda_1(a) = 0.3, \lambda_1(b) = 0.4, \lambda_1(c) = 0.5,$
 $\lambda_2(a) = 0.6, \lambda_2(b) = 0.5, \lambda_2(c) = 0.5,$
 $\lambda_3(a) = 0.6, \lambda_3(b) = 0.5, \lambda_3(c) = 0.4,$
 $\lambda_4(a) = 0.3, \lambda_4(b) = 0.4, \lambda_4(c) = 0.4,$
 $\mu_1(a) = 0.4, \mu_1(b) = 0.7, \mu_1(c) = 0.5,$
 $\mu_2(a) = 0.4, \mu_2(b) = 0.1, \mu_2(c) = 0.5.$

Define fuzzy topology $\tau = I^X \to I$ as follows

$$\tau (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{0, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}, \\ 0 \text{ if } \cdot \text{ otherwise } \end{cases}$$

$$\sigma (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \mu_1, \\ \frac{1}{2} \text{ if } \lambda = \mu_2, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

Then the identity mapping $id_X : (X, \tau) \to (Y, \sigma)$ is $\frac{1}{2}$ -fuzzy weakly β -open but not $\frac{1}{2}$ -fuzzy complementary weakly β -open.

Note:

Examples 2.12 and 2.13 demonstrate the independence of complementary $\frac{1}{2}$ fuzzy weakly β -openness and $\frac{1}{2}$ -fuzzy weakly β -openness.

Theorem 2.14.

Let $\beta O(X,\tau)$ is *r*-fuzzy closed under intersections. If $f:(X,\tau) \to (Y,\sigma)$ is bijective *r*-fuzzy weakly β -open and c.w. β .o, then *f* is *r*-fuzzy β -open.

Proof.

Let \mathscr{G} be an r-fuzzy open subset in X with $x \in \mathscr{G}$, since f is r-fuzzy weakly β -open, by Theorem 2.3(v) there exists a r-fuzzy β -open set η containing f(x) = y such that $\eta \leq f(C_{\tau}(\mathscr{G}, r))$. Now $Fr(\mathscr{G}, r) = C_{\tau}(\mathscr{G}, r) - \mathscr{G}$ and thus $x \notin Fr(\mathscr{G}, r)$. Hence $y \notin Fr(\mathscr{G}, r)$ and therefore $y \in \eta - f(Fr(\mathscr{G}, r))$. Put $\eta_y = \eta - f(Fr(\mathscr{G}, r))$. a r-fuzzy β -open set since f is c.w. β .o. Since $y \in \eta_y, y \in f(Fr(\mathscr{G}, r))$. But $y \notin f(Fr(\mathscr{G}, r))$ and thus $y \notin f(Fr(\mathscr{G}, r)) = f(C_{\tau}(\mathscr{G}, r)) - f(\mathscr{G})$ which implies that $y \in f(\mathscr{G})$. Therefore $f(\mathscr{G}) = \lor \{\eta_y : \eta_y \in \beta O(Y, \sigma), y \in f(\mathscr{G})\}$. Hence f is r-fuzzy β -open.

Theorem 2.15.

If $f:(X,\tau) \to (Y,\sigma)$ is an a.o.S function, then it is a *r*-fuzzy weakly β -open function.

Proof.

Let \mathscr{G} be an *r*-fuzzy open set in *X*. Since *f* is a.o.S and $I_{\tau}(C_{\tau}(\mathscr{G},r),r)$) is *r*-fuzzy regular open, $f(I_{\tau}(C_{\tau}(\mathscr{G},r),r))$ is *r*-fuzzy open in *Y* and hence $f(\mathscr{G}) \leq f(I_{\tau}(C_{\tau}(\mathscr{G},r),r)) \leq I_{\tau}(f(C_{\tau}(\mathscr{G},r),r) \leq \beta I_{\tau}(f(C_{\tau}(\mathscr{G},r),r)))$. This shows that *f* is *r*-fuzzy weakly β -open. The converse of Theorem 2.15 is not true in general.

Example 2.16.

A *r*-fuzzy weakly β -open function need not be *r*-fuzzy a.o.S.

Let $X = \{a, b, c\}, Y = \{a, b, c\}$ and $\mu_1, \mu_2 \in I^X$ $\nu_1, \nu_2 \in I^Y$ defined as follows: $\mu_1(a) = 0.3, \mu_1(b) = 0.2, \mu_1(c) = 0.7,$ $\mu_2(a) = 0.8, \mu_2(b) = 0.8, \mu_2(c) = 0.4,$ $\nu_1(a) = 0.8, \nu_1(b) = 0.7, \nu_1(c) = 0.6,$ $\nu_2(a) = 0.5, \nu_2(b) = 0.6, \nu_2(c) = 0.2.$

Define fuzzy topology $\tau = I^X \rightarrow I$ as follows

$$\tau (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \mu_1, \\ \frac{1}{3} \text{ if } \lambda = \mu_2, \\ \frac{2}{3} \text{ if } \lambda = \mu_1 \lor \mu_2, \\ \frac{2}{3} \text{ if } \lambda = \mu_1 \land \mu_2, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

$$\sigma (\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = v_1, \\ \frac{1}{2} \text{ if } \lambda = v_2, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

Then the identity mapping $id_X : (X, \tau) \to (Y, \sigma)$ is $\frac{1}{2}$ -fuzzy weakly β -open but not $\frac{1}{2}$ -fuzzy a.o.S, since $I_{\tau}(f(I_{\tau}(C_{\tau}(\lambda, \frac{1}{2}), \frac{1}{2}), \frac{1}{2}) = \phi$.

Lemma 2.17.

If $f:(X,\tau) \to (Y,\sigma)$ is a *r*-fuzzy continuous function, then for any *r*-fuzzy subset \mathscr{G} of X, $f(C_{\tau}(\mathscr{G},r)) \leq C_{\tau}(f(\mathscr{G},r))$.

Theorem 2.18. If $f:(X,\tau) \to (Y,\sigma)$ is a *r*-fuzzy weakly β -open and *r*-fuzzy continuous function, then *f* is a *r*-fuzzy β -open function.

Proof.

Let \mathscr{G} be a r-fuzzy open set in X. Then by r-fuzzy weak β -openness of f, $f(\mathscr{G}) \leq \beta I_{\tau}(f(C_{\tau}(\mathscr{G}, r), r))$. Since f is r-fuzzy continuous $f(C_{\tau}(\mathscr{G}, r)) \leq C_{\tau}(f(\mathscr{G}, r))$. Hence we obtain that, $f(\mathscr{G}) \leq \beta I_{\tau}(f(C_{\tau}(\mathscr{G}, r), r)) \leq \beta I_{\tau}(C_{\tau}(f(\mathscr{G}, r), r)) \leq C_{\tau}(I_{\tau}(C_{\tau}(f(\mathscr{G}, r), r), r))$. Therefore, $f(\mathscr{G}) \leq C_{\tau}(I_{\tau}(f(\mathscr{G}, r)))$ which shows that $f(\mathscr{G})$ is a r-fuzzy β -open set in Y. Thus, f is a r-fuzzy β -open function.

Since every r-fuzzy strongly continuous function is r-fuzzy continuous we have the following corollary.

Corollary 2.19.

If $f:(X,\tau) \to (Y,\sigma)$ is an injective *r*-fuzzy weakly β -open and *r*-fuzzy strongly continuous function. Then *f* is *r*-fuzzy β -open.

Theorem 2.20.

If $f:(X,\tau) \to (Y,\sigma)$ is a injective *r*-fuzzy weakly β -open function of a space X onto a *r*-fuzzy β -connected space *Y*, then *X* is *r*-fuzzy connected.

Proof.

Let us assume that X is not r-fuzzy connected. Then there exist nonempty r-fuzzy open sets ϑ_1 and ϑ_2 such that $\vartheta_1 \wedge \vartheta_{2=\phi}$ and $\vartheta_1 \vee \vartheta_2 = X$. Hence we have $f(\vartheta_1) \wedge f(\vartheta_2) = \phi$ and $f(\vartheta_1) \vee f(\vartheta_2) = Y$. Since f is r-fuzzy weakly β -open, we have $f(\vartheta_i) \leq \beta I_{\tau} (f(C_{\tau}(\vartheta_i, r), r) \text{ for } i = 1,2 \text{ and since } \vartheta_i \text{ is } r$ -fuzzy open and also r-fuzzy closed, we have $f(C_{\tau}(\vartheta_i, r)) = f(\vartheta_i)$ for i = 1,2. Hence $f(\vartheta_i)$ is r-fuzzy β -open in Y for i = 1,2. Thus, Y has been decomposed into two non-empty

disjoint *r*-fuzzy β -open sets. This is contrary to the hypothesis that *Y* is a *r*-fuzzy β -connected space. Thus *X* is connected.

Recall, that a space X is said to be hyperconnected [12, 13] if every nonempty open subset of X is dense in X.

Theorem 2.21.

If X is a r-fuzzy hyperconnected space, then a function $f:(X,\tau) \to (Y,\sigma)$ is r-fuzzy weakly β -open if and only if f(X) is r-fuzzy β -open in Y.

Proof.

The sufficiency is clear. For the necessity observe that for any *r*-fuzzy open subset \mathscr{G} of X, $f(\mathscr{G}) \leq f(X) = \beta I_{\tau}(f(X,r)) = \beta I_{\tau}(f(C_{\tau}(\mathscr{G},r),r))$.

3. *r*-fuzzy Weakly β -closed functions.

Now, we define the generalized form of r-fuzzy β -closed functions

Definition 3.1.

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be *r*-fuzzy weakly β -closed if $\beta C_{\tau}(f(I_{\tau}(F,r),r)) \le f(F)$ for each closed set *F* in *X*.

The implications between r -fuzzy weakly β -closed (res. r -fuzzy weakly β -open) functions and other types of r -fuzzy closed (resp. r -fuzzy open) functions are given by the following diagram.

The converse of these statements are not necessarily true, as shown by the following examples.

Example.3.2

An injective function from a fuzzy discrete space into an fuzzy indiscrete space is *r*-fuzzy β -open and *r*-fuzzy β -closed, but neither *r*-fuzzy α -open nor *r*-fuzzy α -closed.

Example.3.3

Let $X = \{a, b\}$ and $Y = \{p, q\}$. Define $\lambda_1, \lambda_2 \in I^X$ $\mu_1, \mu_2 \in I^Y$ as follows:

$$\lambda_1(a) = 0.1, \lambda_1(b) = 0.2,$$

$$\lambda_2(a) = 0.2, \lambda_2(b) = 0.1$$

$$\mu_1(p) = 0.6, \mu_1(q) = 0.7,$$

$$\mu_2(p) = 0.7, \mu_2(q) = 0.6.$$

Define fuzzy topology $\tau_1, \tau_2 = I^X \to I$ as follows

$$\tau_{1}(\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{0, \underline{1}\}, \\ \frac{2}{3} \text{ if } \lambda = \lambda_{1}, \\ \frac{1}{4} \text{ if } \lambda = \lambda_{2}, \\ \frac{1}{4} \text{ if } \lambda = \lambda_{1} \lor \lambda_{2}, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

$$\tau_{2}(\mu) = \begin{cases} 1 \text{ if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{2}{3} \text{ if } \mu = \mu_{1}, \\ \frac{1}{4} \text{ if } \mu = \mu_{2}, \\ \frac{1}{4} \text{ if } \mu = \mu_{1} \lor \mu_{2} \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

Then the mapping $f:(X,\tau_1) \to (Y,\tau_2)$ define by f(a) = q, f(b) = q. Then f is $\frac{2}{3}$ -fuzzy α -open and $\frac{2}{3}$ -fuzzy α -closed but neither $\frac{2}{3}$ -fuzzy open nor $\frac{2}{3}$ -fuzzy closed

Example 3.4.

Let $f: (X, \tau) \to (Y, \sigma)$ be the function from Example 2.2. Then it is shown that f is r-fuzzy weakly β -closed which is not r-fuzzy weakly closed.

Example 3.5.

Let
$$X = \{a, b, c\}$$
 and $Y = \{p, q, r\}$. Define $\lambda_1, \lambda_2 \in I^X$ $\mu_1, \mu_2 \in I^Y$ as follows:
 $\lambda_1(a) = 0.3, \lambda_1(b) = 0.7, \lambda_1(c) = 0.7$
 $\lambda_2(a) = 0.7, \lambda_2(b) = 0.3, \lambda_2(c) = 0.3,$
 $\mu_1(p) = 0.1, \mu_1(q) = 0.3, \mu_1(r) = 0.3$

$$\mu_2(p) = 0.3, \mu_2(q) = 0.1, \mu_2(q) = 0.1.$$

Define fuzzy topology $\tau_1, \tau_2 = I^X \to I$ as follows

$$\tau_{1}(\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{0, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \lambda_{1}, \\ \frac{1}{3} \text{ if } \lambda = \lambda_{2}, \\ \frac{1}{3} \text{ if } \lambda = \lambda_{1} \lor \lambda_{2}, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

$$\tau_{2}(\mu) = \begin{cases} 1 \text{ if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \mu = \mu_{1}, \\ \frac{1}{3} \text{ if } \mu = \mu_{2}, \\ \frac{1}{3} \text{ if } \mu = \mu_{1} \lor \mu_{2} \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

Then the mapping $f:(X,\tau_1) \to (Y,\tau_2)$ define by f(a) = q, f(b) = q, f(c) = r. Then f is $\frac{1}{2}$ -fuzzy β -closed ($\frac{1}{2}$ -fuzzy β -open) but not $\frac{1}{2}$ -fuzzy semi open ($\frac{1}{2}$ -fuzzy semi closed).

Example 3.6.

Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$. Define $\lambda_1, \lambda_2 \in I^X$ $\mu_1 \in I^Y$ as follows: $\lambda_1(a) = 0.4, \lambda_1(b) = 0.6, \lambda_1(c) = 0.4$ $\lambda_2(a) = 0.6, \lambda_2(b) = 0.4, \lambda_2(c) = 0.4,$ $\mu_1(p) = 0.6, \mu_1(q) = 0.4, \mu_1(r) = 0.5$ Define fuzzy topology $\tau_1, \tau_2 = I^X \to I$ as follows

$$\tau_{1}(\lambda) = \begin{cases} 1 \text{ if } \lambda \in \{0, \underline{1}\}, \\ \frac{1}{2} \text{ if } \lambda = \lambda_{1}, \\ \frac{1}{2} \text{ if } \lambda = \lambda_{2}, \\ \frac{1}{2} \text{ if } \lambda = \lambda_{1} \lor \lambda_{2}, \\ \frac{1}{2} \text{ if } \lambda = \lambda_{1} \lor \lambda_{2}, \\ \frac{1}{2} \text{ if } \lambda = \lambda_{1} \land \lambda_{2} \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

$$\tau_{2}(\mu) = \begin{cases} 1 \text{ if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2} \text{ if } \mu = \mu_{1}, \\ 0 \text{ if } \cdot \text{ otherwise} \end{cases}$$

Then the identity mapping $id_X : (X, \tau_1) \to (Y, \tau_2)$ define by

f(a) = a, f(b) = b, f(c) = c. Then f is $\frac{1}{2}$ -fuzzy β -closed ($\frac{1}{2}$ -fuzzy β -open) but not $\frac{1}{2}$ -fuzzy preclosed ($\frac{1}{2}$ -fuzzy preopen).

Theorem 3.4.

For a function $f:(X,\tau) \to (Y,\sigma)$, the following conditions are equivalent.

- (i) f is r-fuzzy weakly β -closed.
- (ii) $\beta C_{\tau}(f(\vartheta)) \le f(C_{\tau}(\vartheta))$ for every *r*-fuzzy open set ϑ of *X*.
- (iii) $\beta C_{\tau}(f(\theta)) \le f(C_{\tau}(\theta))$ for each *r*-fuzzy regular open subset θ of *X*,
- (iv) For each subset F in Y and each r-fuzzy open set F in X with $f^{-1}(F) \le \vartheta$, there exists a r-fuzzy β -open set λ in Y with $F \le \lambda$ and $f^{-1}(F) \le C_{\tau}(\vartheta)$,

(v) For each point y in Y and each open set \mathscr{G} in X with $f^{-1}(y) \le \mathscr{G}$, there exists a r-fuzzy β -open set λ in Y containing y and $f^{-1}(\lambda) \le \mathscr{G}$,

- (vi) $\beta C_{\tau} (f(I_{\tau}(C_{\tau}(\vartheta, r), r), r) \le f(C_{\tau}(\vartheta, r))$ for each set ϑ in X,
- (vii) $\beta C_{\tau} (f(I_{\tau}(\theta C_{\tau}(\vartheta, r), r), r) \le f(\theta C_{\tau}(\vartheta, r))$ for each set ϑ in X,
- (viii) $\beta C_{\tau}(f(\vartheta, r), r) \le f(C_{\tau}(\vartheta, r))$ for each *r*-fuzzy β -open set ϑ in *X*.

Proof. (*i*) \rightarrow (*ii*). Let \mathcal{G} be any *r*-fuzzy open subset of *X*. Then $\beta C_{\tau} (f(\mathcal{G}, r)) = \beta C_{\tau} (f(I_{\tau}(\mathcal{G}, r), r) \le \beta C_{\tau} (f(I_{\tau}(C_{\tau}(\mathcal{G}, r), r), r) \le f(C_{\tau}(\mathcal{G}, r))).$

 $(ii) \rightarrow (i)$. Let *F* be any *r*-fuzzy closed subset of *X*. Then,

$$\beta C_{\tau}\left(f(I_{\tau}\left(\vartheta,r\right),r\right)\leq f(C_{\tau}\left(I_{\tau}\left(F,r\right),r\right)\leq f(C_{\tau}\left(F,r\right))=f(F)\,.$$

It is clear that: $(ii) \rightarrow (vii), (iv) \rightarrow (v), \text{ and } (i) \rightarrow (vi) \rightarrow (viii) \rightarrow (iii) \rightarrow (i).$

To show that $(iii) \rightarrow (iv)$, : Let *F* be a fuzzy subset in *Y* and let *B* be fuzzy open in *X* with $f^{-1}(F) \leq B$. Then $f^{-1}(F) \wedge C_{\tau}(X - C_{\tau}(B, r), r) = \phi$. and consequently, $F \wedge f$ $(C_{\tau}(X - C_{\tau}(B, r), r) = \phi$. Since $X - C_{\tau}(B, r)$ is *r*-fuzzy regular open, *F* $F \wedge \beta C_{\tau}(f(X - C_{\tau}(B, r), r) = \phi$ by (iii).

Let
$$\lambda = Y - \beta C_{\tau} (f(X - C_{\tau}(\vartheta, r), r))$$
. Then λ is r -fuzzy β -open with $F \le \lambda$
and $f^{-1}(\lambda) \le X - f^{-1}(\beta C_{\tau} (f(X - C(\vartheta, r), r))) \le X - f^{-1}f(X - C_{\tau}(\vartheta, r))) \le C_{\tau}(\vartheta, r)$.

 $(vii) \rightarrow (i)$: It is suffices see that $\theta C_{\tau}(\vartheta, r) = C_{\tau}(\vartheta, r)$ for every open sets ϑ in *X*.

 $(v) \to (i)$: Let *F* be closed in *X* and let $y \in Y - f(F)$. Since $f^{-1}(y) \le X - F$, there exists a *r*-fuzzy β -open λ in *Y* with $y \in \lambda$ and $f^{-1}(\lambda) \le C_{\tau}(X - F, r) = X - I_{\tau}(F, r)$ by (v). Therefore $\lambda \wedge f(I_{\tau}(F, r) = \phi$, so that $y \in Y - \beta C_{\tau}(f(I_{\tau}(F, r), r))$. Thus $(v) \to (i)$. Finally, for

 $(vii) \rightarrow (viii)$: Note that $\theta C_{\tau}(\vartheta, r) = C_{\tau}(\vartheta, r)$ for each *r*-fuzzy β -open subset ϑ in *X*. The following theorem the proof is mostly straightforward and is omitted

Theorem 3.5.

For a function $f:(X,\tau) \to (Y,\sigma)$ the following conditions are equivalent :

- (i) f is r-fuzzy weakly β -closed,
- (ii) $\beta C_{\tau}(f(I_{\tau}(F,r),r) \le f(F))$ for each *r*-fuzzy β -closed subset *F* in *X*,
- (iii) $\beta C_{\tau}(f(I_{\tau}(F,r),r) \le f(F) \text{ for every } r \text{-fuzzy } \alpha \text{-closed subset } F \text{ in } X.$

Remark 3.6.

By Theorem 2.5, if $f:(X,\tau) \to (Y,\sigma)$ is a bijective function, then f is *r*-fuzzy weakly β -open if and only if f is *r*-fuzzy weakly β -closed. Next we investigate conditions under which *r*-fuzzy weakly β -closed functions are *r*-fuzzy β -closed.

Theorem 3.7.

If $f:(X,\tau) \to (Y,\sigma)$ is *r*-fuzzy weakly β -closed and if for each fuzzy closed subset *F* of *X* and each fiber $f^{-1}(y) \le X - F$ there exists a open β of *X* such that $f^{-1}(y) \le \beta \le C_{\tau}(\beta, r) \le X - F$. Then *f* is *r*-fuzzy β -closed.

Proof. Let *F* is any closed subset of *X* and let $y \in Y - f(F)$. Then $f^{-1}(y) \wedge F = \phi$ and hence $f^{-1}(y) \leq X - F$. By hypothesis, there exists a open ϑ of *X* such that $f^{-1}(y) \leq \vartheta \leq C_{\tau}(\vartheta, r) = X - F$. Since *f* is *r*-fuzzy β -weakly-closed by Theorem 3.4, there exists a *r*-fuzzy β -open η in *Y* with $y \in \eta$ and $f^{-1}(\eta) \leq C_{\tau}(\vartheta, r)$. Therefore, we obtain $f^{-1}(\eta) \wedge F = \phi$ and hence $\eta \wedge f(F) = \phi$, this shows that $y \notin \beta C_{\tau} f(F, r)$. Therefore, f(F) is *r*fuzzy β -closed in *Y* and *f* is *r*-fuzzy β -closed.

Theorem 3.8.

If $f:(X,\tau) \to (Y,\sigma)$ is contra-open, then f is weakly β -closed.

Proof. Let *F* be a closed subset of *X*. Then, $\beta C_{\tau} f(I_{\tau}(F,r),r) \le f(I_{\tau}(F,r)) \le f(F)$.

Theorem 3.9.

If $f:(X,\tau) \to (Y,\sigma)$ is one-one and r-fuzzy weakly β -closed, then for every subset F of Y and every open set β in X with $f^{-1}(F) \le \beta$, there exists a r-fuzzy β -closed set μ in Y such that $F \le \mu$ and $f^{-1}(\mu) \le C_{\tau}(\beta, r)$.

Proof.

Let *F* be a subset of *Y* and let \mathscr{G} be a open subset of *X* with $f^{-1}(F) \leq \mathscr{G}$. Put $\mu = \beta C_{\tau} (f(I_{\tau}(C_{\tau}(\mathscr{G}, r), r), r), r))$, then μ is a *r*-fuzzy β -closed subset of *Y* such that $F \leq \mu$ since $F \leq f(\mathscr{G}) \leq f(I_{\tau}(C_{\tau}(\mathscr{G}, r), r) \leq \beta C_{\tau} (f(I_{\tau}(C_{\tau}(\mathscr{G}, r), r), r)) = \mu$. And since *f* is

r-fuzzy weakly β -closed, $f^{-1}(\mu) \leq C_{\tau}(\vartheta, r)$.

Taking the set F in Theorem 3.9 to be y for $y \in Y$ we obtain the following result.

Corollary 3.10.

If $f:(X,\tau) \to (Y,\sigma)$ is one-one and r-fuzzy weakly β -closed, then for every point y in Y and every open set β in X with $f^{-1}(y) \le \beta$, there exists a rfuzzy β -closed set μ in Y containing y such that $f^{-1}(\mu) \le C_{\tau}(\beta, r)$. Recall that, a set F in a space X is r-fuzzy β -compact if for each cover Ω of F by open β in X, there is a finite family $\beta_1, \beta_2, \beta_3, ..., \beta_n$ in Ω such that $F \le I_{\tau} (\lor \{C_{\tau}(\beta_i\} : i = 1, 2, ..., n\})$ [16].

Theorem 3.11.

If $f:(X,\tau) \to (Y,\sigma)$ is *r*-fuzzy weakly β -closed with all fibers θ -closed, then f(F) is *r*-fuzzy β -closed for each θ -compact *F* in *X*.

Proof.

Let *F* be *r*-fuzzy θ -compact and let $y \in Y - f(F)$. Then $f^{-1}(y) \wedge F = \phi$ and for each $x \in F$ there is an open U_x containing *x* in *X* and $C_{\tau}(\vartheta_x) \wedge f^{-1}(y) = \phi$. Clearly $\Omega = \{U_x : x \in F\}$ is an open cover of *F* and since *F* is *r*-fuzzy θ -compact, there is a finite family $\{\vartheta_{x_1}, \vartheta_{x_2}.\vartheta_{x_3}, ..., \vartheta_{x_n}\}$ in Ω such that $F \leq I_{\tau}(\lambda, r)$, where $\lambda = \bigvee \{C_{\tau}(\vartheta_{x_i}) : i = 1, 2, ..., n\}$ Since *f* is *r*-fuzzy weakly β -closed by Theorem 2.5 there exists a r -fuzzy β -open μ in Y with

 $f^{-1}(y) \le f^{-1}(\mu) \le C_{\tau}(X - \lambda)X - I_{\tau}(\lambda, r) \le X - F$. Therefore $y \in \mu$ and $\mu \land f(F) = \phi$. Thus $y \in Y - \beta C_{\tau}(f(F, r))$. This shows that f(F) is r-fuzzy β closed. Two non empty subsets λ and μ in X are strongly separated [16], if there exist open sets ϑ and η in X with $\lambda \le \vartheta$ and $\mu \le \eta$ and $C_{\tau}(\vartheta, r) \le C_{\tau}(\eta, r) = \phi$. If λ and μ are singleton sets we may speak of points being strongly separated. We will use the fact that in a r-fuzzy normal space, disjoint closed sets are strongly separated. Recall that a space X is said to be r-fuzzy β -Hausdorff or in short $\beta - T_2$ [10], if for every pair of distinct points x and y, there exist two r-fuzzy β -open sets ϑ and η such that $x \in \vartheta$ and $y \in \eta$ and $\vartheta \land \eta = \phi$.

Theorem 3.12.

If $f:(X,\tau) \to (Y,\sigma)$ is a *r*-fuzzy weakly β -closed surjection and all pairs of disjoint *r*-fuzzy fibers are strongly separated, then *Y* is $\beta - T_2$.

Proof.

Let y and z be two points in Y. Let \mathscr{G} and η be open sets in X such that $f^{-1}(y) \in \mathscr{G}$ and $f^{-1}(z) \in \eta$ respectively with $C_{\tau}(\mathscr{G}) \wedge C_{\tau}(\eta) = \phi$. By *r*-fuzzy β -closedness (Theorem 3.4(v)) there are *r*-fuzzy β -open sets F and μ in Y such that $y \in F$ and $z \in \mu$, $f^{-1}(F) \leq C_{\tau}(\mathscr{G})$ and $f^{-1}(\mu) \leq C_{\tau}(\eta)$. Therefore $F \wedge \mu = \phi$, because $C_{\tau}(\mathscr{G}) \wedge C_{\tau}(\eta) = \phi$ and f surjective. Then Y is $\beta - T_2$.

Corollary 3.13.

If $f:(X,\tau) \to (Y,\sigma)$ is *r*-fuzzy weakly β -closed surjection with all fibers closed and X is *r*-fuzzy normal, then Y is $\beta - T_2$.

Corollary 3.14.

If $f:(X,\tau) \to (Y,\sigma)$ is continuous *r*-fuzzy weakly β -closed surjection with *X* is a *r*-fuzzy compact T_2 space and *Y* is a *r*-fuzzy T_1 space, then *Y* is *r*-fuzzy compact $\beta - T_2$ space.

Proof.

Since *f* is a *r*-fuzzy continuous surjection and *Y* is a *r*-fuzzy T_1 space, *Y* is *r*-fuzzy compact and all fibers are *r*-fuzzy closed. Since *X* is *r*-fuzzy normal *Y* is also $\beta - T_2$.

Definition 3.15.

A topological space X is said to be r -fuzzy quasi H-closed (resp. r -fuzzy β space), if every r -fuzzy open (resp. r -fuzzy β -closed) cover of X has a finite subfamily whose closures cover X. A subset λ of a r -fuzzy topological space X is r -fuzzy quasi H-closed relative to X (resp. r -fuzzy β -space relative to X) if every cover of λ by r -fuzzy open (resp. r -fuzzy β -closed) sets of X has a finite subfamily whose r -fuzzy closures cover λ .

Lemma 3.16.

A function $f:(X,\tau) \to (Y,\sigma)$ is open if and only if for each $\mu \le Y$, $f^{-1}(C_{\tau}(\mu,r)) \le C_{\tau}(f^{-1}(\mu,r))$ [9].

Theorem 3.17.

Let X be an extremally disconnected space and $\beta O(X,\tau)$ closed under finite intersections. Let $f:(X,\tau) \to (Y,\sigma)$ be an open weakly β -closed function which is one-one and such that $f^{-1}(y)$ is quasi H-closed relative to X for each y in Y . If G is β -space relative to Y then $f^{-1}(G)$ is quasi H-closed.

Proof.

Let $\{\eta_{\alpha} : \alpha \in I\}$, (I being the index set) be an open cover of $f^{-1}(G)$. Then for each $y \in G \land f(X)$, $f^{-1}(y) \leq \lor \{C_{\tau}(\eta_{\alpha}, r) : \alpha \in I(y)\} = H_{y}$ for some finite subfamily I(y) of I. Since X is extremally disconnected each $C_{\tau}(\eta_{\alpha}, r)$ is open, hence H_{y} is open in X. So by Corollary 3.10, there exists a β -closed set g_{y} containing y such that $f^{-1}(g_{y}) \leq C_{\tau}(H_{y}, r)$. Then, $\{\eta_{y} : y \in G \land f(X)\} \lor \{Y - f(X)\}$ is a β -closed cover of G, $G \leq \lor \{C_{\tau}(g_{y}, r) : y \in K\} \lor \{C_{\tau}(Y - f(X)\}$ for some finite subset K of $G \land f(X)$. Hence and by Lemma 3.16,

$$f^{-1}(G) \leq \vee \{f^{-1}(C_{\tau}(\mathcal{G}_{y}, r) : y \in K\} \vee \{f^{-1}(C_{\tau}(Y - f(X))\} \leq \vee \{C_{\tau}(f^{-1}(\mathcal{G}_{y}, r)) : y \in K\} \vee \{C_{\tau}(f^{-1}(Y - f(X)))\} \leq \{C_{\tau}(f^{-1}(\mathcal{G}_{y}, r)) : y \in K\},\$$

so $f^{-1}(G) \leq \bigvee \{C_{\tau}(\eta_{\alpha}, r) : \alpha \in I(y), y \in K\}$. Therefore $f^{-1}(G)$ is quasi H-closed.

Corollary 3.18.

Let $f:(X,\tau) \to (Y,\sigma)$ be as in Theorem 3.17. If Y is β -space, then X is quasi-H-closed.

REFERENCES

[1] A. A. Abbas, Fuzzy β -Irresolute Functions, Applied Mathematics and Computation, 157 (2004), 369-380.

[2] K. K. Azad , On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82(1981), 14–32.

[3] A. S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy precontinuity, Fuzzy Sets and Systems, 44(1991), 303-308.

[4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–189

[5] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri, On θ -semiopen sets and separation axioms in topological spaces, Carpathian. J.Math., 24(1) (2008), 13-22.

[6] I. M. Hanafy, Fuzzy γ -open sets and fuzzy γ -continuity, J. Fuzzy Math. 7(2) (1999), 419-430.

[7] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems, 4(1992), 79-82.

[8] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems, 49(2) (1992), 237-242.

[9] Y. C. Kim and J. W. Park, Some properties of r-generalized fuzzy closed sets, Far East J. of Math. Science, 7(3) (2002), 253-268.

[10] N. Levine, Semi-open sets and Semi-continuity in topological spaces, American Mathematical Monthly, 70(1963), 36-41.

[11] Jin Han Park and Bu Young Lee, Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings, Fuzzy Sets and Systems, 67(1994), 395-364.

[12] M. Palanisamy and A. Vadivel, Fuzzy β -open Sets and Fuzzy β^* -Open Set in \hat{s} ostaks Fuzzy Topology (submitted).

[13] M. Palanisamy and R. Prakash, r-fuzzy Z * -Open Sets and r-fuzzy Z* -Continuity In Topological Spaces, GIS SCIENCE JOURNAL, VOLUME 10, ISSUE 1, Page No. 177-200, 2023

[14] J. H. Park, B. Y. Lee and M. J. Son, On δ -semi-open sets in topological spaces, Journal of the Indian Academy of Mathematics, 19(1) (1997), 59-67.

[15] A. A. Ramadan, S. E. Abbas and Young Chan Kim, Weaker Forms of Continuity in \hat{s} ostaks Fuzzy Topological Spaces, Indian J. Pure and Appl. Math. 34(2)(2003), 311-333.

[16] S. Raychaudhhuri and N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.

[17] S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology, Fuzzy closure operator, Fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems, 54(1993), 207-212.

[18] A. S. \hat{s} ostak, On a fuzzy topological structure, Rend. Circ. Matem. Palermo Ser. II 11(1985), 89-103.

[19] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103-118.

[20] S. S. Thakur and R. K. Khare, Fuzzy semi δ -preopen sets and fuzzy semi δ -precontinuous mappings, Universitatea din Bacau studii si cerceturi Strintitice Seria Matematica, 14 (2004), 201–211.

[21] M. E. El-Shafei and A. Zakari, θ -generalized closed sets in fuzzy topological spaces, Arab. J. Sci. Eng. Sect. A Sci. 31(2) (2006), 197-206.