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ABSTRACT 

 
The purpose of exploring infinite groups in this thesis was to produce non-abelian finite 

simple groups as homomorphic images. These infinite groups are semi-direct products 

known as progenitors. The  permutation  progenitors  studied  were:  2∗8 : 22  ·A4, 

2∗10 : D20, 2∗4 : C4, 2∗7 : (7 : 6), 3∗3 : S3, 2∗15 : ((5 × 3) : 2), and 2∗20 : A5. When we 
factored said progenitors by an appropriate number of relations, we produced several 

original symmetric presentations and constructions of linear groups, other classical groups 

and sporadic groups. We have found original symmetric presentations of several 

important   groups,   including:   PGL2(7), PSL2(8), PSL2(11), PGL2(11), PGL2(13), 

PSL2(19), PGL2(29), PSL2(41), PSL2(71), J2, U (3, 4), U (3, 5), M11, and M22. 

When solving various extension problems, we are able to identify the isomorphism types of 

the finite images we discovered. We present proofs of the four types of extension problems: 

Direct Products, Semi-Direct Products, Central Extensions, and Mixed Extensions. We 

perform manual double coset enumeration with the support of a computer-based program, 

Magma, to construct Cayley diagrams of the finite groups: 32 : S3, M11,   PSL2(19), 

PSL2(7), S4, and U3(5) : 2. 
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Introduction 

 
Progenitors factored by one or more relations frequently give non-abelian simple 

groups and even sporadic groups as their homomorphic images. The main goal of this 

thesis was to obtain original symmetric presentations and constructions of linear groups, 

other classical groups and sporadic groups by factoring permutation progenitors.  Let  G 

be a group and T   = {to, t1, ..., tn−1} where Ti   =<  ti   >, with i =  0, 1, ..., n − 1, is the 
cyclic subgroup generated by ti  and let N be a subgroup of Sn that acts transitively and 

faithfully on T called the control subgroup. 

In  the  semi-direct  product,  2∗n  :  N   =  {πw|π ∈ N, w  is  a reduced word in ti}, 

N acts by conjugation as permutations of the n involutary symmetric generators. Every 
element of the progenitor can be represented as a word of πw. We want to factor the 

progenitor by relations of the form πw(t1, ..., tn), giving us a finite homomorphic image of 

the infinite progenitor. We will then perform double coset enumeration of some of these 

finite groups to find the double cosets and determine the number of single cosets each 

contains. We will use a Cayley Diagram to demonstrate a graphical representation of this 

process. 

Our goal is to factor 2∗n : N by relations, that equate elements of N to the 

product of tis, resulting in finite homomorphic images. Once we find all of the relations, 

we will perform double coset enumeration of G over N . Hence, we will find all of the 

double cosets and find the total number of single cosets each double coset contains. We 

will have completed the double coset enumeration when the set of right cosets obtained is 

closed under the operation of right multiplication. Thus, we will find the order of G once 

we find all relations, perform double coset enumeration of G over N , create the Cayley 

Graph and obtain the index of N in G. 
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2.1 Permutation   Progenitor 
 

In this section we will discuss the technique we used to write presentations for 

permutation progenitors. We wish to write a presentation for permutation progenitors of 

the form 2∗n : N . We first choose a control group transitive on n letters, denoted as N . 

Once we have a presentation for our control group N , we introduce a symmetric generator 

typically labeled as t, where t is a generator of a free product group. Throughout this 

thesis we will label our t as t1, with the exception of one example. This example will 

clearly state the labeling for t. In order to give our t the name t1, we must find the 

generator of our point stabilizing group, hence N 1. Allowing our t to commute with such 

a generator ensures our t is t1. In general, the progenitors (2)∗n : N will take on the 
following form: 

 

< generators of N, t | presentation of N, t2, (t, N 1) > . 

In the following example, we will be demonstrating the process of writing a presentation 

for a permutation progenitor. 

Example 2.2.1. Writing a Presentation for the Permutation Progenitor, 

2∗10 : D20 

We wish to write a presentation for a progenitor of the form 2∗10 : N . The 2 in 

the free product 2∗10 represents the order of our tis. The 10 represents the amount of tis 

we have of order 2. Then control group N must be transitive on 10 letters. With the help 

of Magma’s database of stored groups, we find our desired transitive group, D20. We will 

be using Magma to assist with finding the presentation for this control group N . 

As stated previously we must include a presentation of the control group in our 

progenitor presentation. Since we have 10 tis, it’s convenient to select the Symmetric 

Group 10, a set of size 10, to begin this process.  We let our control group be a subgroup 

of S10 generated by the permutations Magma provided us with: a, b and c. We store this 

information into Magma as follows. 

S:=Sym(10); 
A:=S!(1, 3, 9, 7, 8)(2, 6, 4, 10, 5); 
B:=S!(1, 2)(3, 5)(4, 7)(6, 8)(9, 10); 
C:=S!(1, 4)(2, 7)(3, 10)(5, 9)(6, 8); 
N:=sub<S|A,B,C>;#N 

 
 

We discover that the order of  N  is  20. Now we  will construct  an FP-Group  of 

N to give a presentation in terms of the generators a, b, and c. (CBFS13) We find the FP- 

Group with the following command. 

FPGroup(N); 
> Finitely presented  group  on  3  generators 
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Relations 
$.2^2  =  Id($) 
$.3^2  =  Id($) 
($.1^-1 * $.2)^2  =  Id($) 
$.1^-1 * $.3 * $.1 * $.3 = Id($) 
($.2 * $.3)^2 = Id($) 
$.1^-5 = Id($) 

 
This presents us with relations of the finitely presented group on three generators. The 

relations given, $.1, $.2, and $.3 are labeled as a, b, and c, respectively. The construction 

of the presentation for N is now completed: 

N  =< a, b, c|b2, c2, (a−1b)2, a−1cac, (bc)2, a−5  >. 

The presentation of our control group can now be written at the beginning of 

the progenitor presentation. 

G<a,b,c>:=Group<a,b,c|b^2,c^2,(a^-1*b)^2,a^-1*c*a*c,(b*c)^2,a^-5>; 
 

One way to verify this group so far is the control group, is to examine the size of the 

group. Before constructing the FP-Group of N , we discovered the order of N was 20. 

When we check the size of this group G, we confirm it is indeed 20. 

The last step to writing the presentation of the progenitor is to state the order 

of our tis and allow t to commute with a point stabilizer in N . Stabilizing 1, t ∼ t1, 
suggests t commutes with the stabilizer 1 in N . We ask Magma to provide us with a 

permutation group N 1 acting on a set of cardinality 10. 

N1:=Stabiliser(N,1); 
N1; 

 
The output given is a permutation in the stabilizer, (2, 5)(3, 8)(6, 10)(7, 9),   which needs 

to be changed into a word in the generators of the control group. The Schreier System 

allows us to change permutations into words. Generator a is the only generator with a 

distinct inverse, thus we use the following Schreier System. 
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Sch:=SchreierSystem(G,sub<G|Id(G)>); 
ArrayP:=[Id(N): i in [1..#N]]; 
for  i in [2..#N]  do 
P:=[Id(N): l in [1..#Sch[i]]]; 
for j in [1..#Sch[i]] do 
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if; 
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if; 
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if; 
if Eltseq(Sch[i])[j] eq -1 then P[j]:=A^-1; end if; end for; 
PP:=Id(N); for k in [1..#P] do PP:=PP*P[k]; end for; ArrayP[i]:=PP; 
end for; for i in [1..#N] do 
if ArrayP[i] eq S!(2,  5)(3,  8)(6,  10)(7,  9) 
then Sch[i]; end if; end for; 

 
The word in the generators of the control group that allows t to commute with 

the stabilizer 1 in N , is ba2c. Adding t, the order of t, and this word that commutes 

with t to the presentation of N , gives us the completed presentation of the permutation 

progenitor, 2∗10 : (D20). We store our presentation in Magma, 

G =< a, b, c, t|b2, c2, (a−1b)2, a−1cac, (bc)2, a−5, t2, (t, ba2c) >. 

G<a,b,c,t>:=Group<a,b,c,t|b^2,c^2,(a^-1*b)^2,a^-1*c*a*c,(b*c)^2,a^-5, 
t^2,(t,b*a^2*c)>; 

 
Curtis’ Famous Lemma gives us light on how to find relations in hopes of finding 

our desired sporadic groups. Two other methods in finding  relations  are also  discussed 

in the following sec 
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