SPLIT-NEIGHBOURHOOD OF A GRAPH

Shashidhar G. Kumbar

Assistant Professor

Department of Mathematics

Govt. First Grade College, Muddebihal

Karnataka

ABSTRACT

A Neighbourhood set S of a graph G is a Split Neighbourhood set if the induced subgraph $\langle V - S \rangle$ is disconnected. The split-Neighbourhood number $n_s(G)$ is the minimum cardinality of a split-Neighbourhood set. In this paper, we have obtained bounds for $n_s(G)$ in terms of order, size and other parameters of graphs.

Keywords: Domination number, Split Domination Number, Split-Neighbourhood.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

The graphs considered here are finite, undirected, without loops or multiple edges and connected. Unless otherwise stated, all graphs are assumed to have 'p' vertices and 'q' edges.

A set S of vertices in graph G is a Neighbourhood set (n - set) of G if $_{u \in S} = _{\cup} <$

(u) >, where < N(u) > is the subgraph induced by u and all vertices adjacent to $u \in S$, $\{u\}$ is not Neighbourhood set of G. The Neighbourhood number $n \circ (G)$ of G is a

minimum cardinality of a n - set of G. This parameter is introduced by E. Sampathkumar and P. S. Neeralagi [6].

There are many types of domination numbers in literature [2]. Similarly we can define different types of Neighbourhood numbers by imposing certain conditions on Neighbourhood sets and derive some of the properties.

A Neighbourhood set S is said to be a maximal Neighbourhood set of G if the induced subgraph $\langle V - S \rangle$ is not a Neighbourhood set of G. The maximal Neighbourhood number

 $n_{\rm m}(G)$ of G is the minimum cardinality of a maximal Neighbourhood set of G. This parameter is introduced by N.D. Soner et al [6].

In this chapter, we introduce the concept of SplitNeighbourhood as follows :

A Neighbourhood set S of a graph G is a Split Neighbourhood set if the induced subgraph $\langle V - S \rangle$ is disconnected. The SplitNeighbourhood number $n_s(G)$ is the minimum cardinality of a SplitNeighbourhood set.

Thus, we observe that for any graph G,

Now we will prove the following results.

2. RESULTS

Theorem A [4] A dominating set D of G is a Split dominating set if and only if there exists two vertices $w_1, w_2 \in V - D$ such that $w_1 - w_2$ path contains a vertex of D.

Theorem 2.1 For any graph G, $n_{\circ}(G) \leq n_{s}(G)$(1)

Further the bound is attained if and only if there exists two vertices $w_1, w_2 \in V - S$ such that every $w_1 - w_2$ path contains a vertex of S where S is a $n \circ - set$ of G.

Proof: Equation (1) follows from the definition of SplitNeighbourhood set.

Further let S be a Neighbourhood set such that there exists two vertices $w_1, w_2 \in V - S$ such that every $w_1 - w_2$ path contains a vertex of S. Then $\langle V - S \rangle$ is disconnected. Hence S is a SplitNeighbourhood set. This implies $n_s(G) \leq n_{\circ}(G)$. Then from (1) we have $n_{\circ}(G) = n_s(G)$.

Conversely suppose the bound is attained. Then if S is a Neighbourhood set, it is also a SplitNeighbourhood set. This implies $\langle V - S \rangle$ is disconnected. Hence there exist two vertices $w_1, w_2 \in V - S$ such that every $w_1 - w_2$ path contains a vertex S.

Theorem B [6] : For a graph G, $n \circ (G) = \gamma(G)$ if and only if there exists a minimum dominating set S. Such that every line in $\langle V - S \rangle$ belongs to $\langle (u) \rangle$ for some $u \in D$.

Theorem 2.2 For any graph G,

Further the bound is attained if and only if there exists a minimum Split dominating set S such that every line in $\langle V - S \rangle$ belongs to $\langle N(u) \rangle$ for some $u \in S$.

Proof: Since every SplitNeighbourhood set is a Split dominating set, hence Split dominating number is less than SplitNeighbourhood number. Suppose the bound is attained. This implies the condition is satisfied from Theorem 5.A [4].

Conversely, suppose that given condition is satisfied for some Split dominating set S. Then again by Theorem 5.B [6], S is a Neighbourhood set. Since < V -

S > is disconnected. S is a Split Neighbourhood set and hence from (2) the bound is attained.

Theorem C [6] For any graph G without isolated points,

$$\gamma(G) \le n_{\circ}(G) \le \alpha_{\circ}(G)$$

Theorem 2.3 For any graph G without isolated points,

 $n_{\rm s}(G) \le \alpha_{\rm o}(G)....(3)$

Further the bound is attained if and only if there exist a Split Neighbourhood set S of G for which V - S is independent with at least two vertices.

Proof:Let S be vertex cover of G. Then, V - S is independent with at least two vertices. This implies, $\langle V - S \rangle$ is disconnected. Also S is a Neighbourhood set from Theorem 5.C [6]. Hence S is a Split Neighbourhood set of G. This proves that the Split Neighbourhood number is less than or equal to vertex covering number.

Now to prove the second part, suppose there exist a Split Neighbourhood set S of G for which V - S is independent with at least two vertices. This implies S is a vertex cover of G. Thus vertex covering number of G is less than or equal to the cardinality of S. Hence from (3), the bound is attained.

Conversely, suppose equality holds. Then there exists a Split Neighbourhood set S which is a vertex cover with $|S| = \alpha \circ (G)$. Then obviously V - S is independent with at least two vertices.

Theorem D [4] For any graph G, $\gamma \leq \gamma_s$

Hence from Theorem 5.1, 5.2, 5.3, 5.C [6] and 5.D [4]

we have,

 $(G) \le n_{\circ}(G) \le n_{\rm s}(G) \le \alpha_{\circ}(G)....(I)$

Theorem 2.4 For any graph G,

Where (G) is the connectivity of graph G.

Proof: Let S be a Split Neighbourhood set of G. Then $\langle V - S \rangle$ is disconnected.

Hence $(G) \leq n_{\rm s}(G)$

Next, we list the exact value of $n_s(G)$ for some standard graphs

Theorem 2.5 (i) For a path P_n with n vertices,

$$n_{s}()_{n} -]^{n}_{3}_{3}$$
 $n \ge 3.....(5)$

(ii) For a circle C_n with n vertices,

$$n()_{s n} -]_{\frac{1}{2}}^{n}$$
 $n \ge 4.....(6)$

- (iii) For a wheel W_n with n vertices,
 - $n_{\rm s}(W_{\rm n}) = 3 \qquad n \ge 5....(7)$

(iv) For a bipartite graph, without isolates, with bipartition $\{v_1, v_2\}$

of V(G),

$$n_{\rm s}(G) \le \min\{|v_1|, |v_2|\}....(8)$$

Moreover the bound is attained by the graphs $K_{m,n}$

Proof :

(i) For a path P_n with n vertices where $n \ge 3$, every Neighbourhood set is a Split Neighbourhood set. Hence (5) follows.

(ii) For a cycle C_n with n vertices where $n \ge 4$, every Neighbourhood set is a Split Neighbourhood set. Hence (6) follows.

(iii) For a wheel W_n with n vertices where $n \ge 5$, the vertex with degree p - 1 together with two non adjacent vertices on the cycle form a Split Neighbourhood set. Hence (7) follows.

(iv) For a bipartite graph with bipartition $\{V_1, V_2\}$ of V(G), both the sets with cardinality V_1 and V_2 are Split Neighbourhood sets. Hence (8) follows. Further if it is a complete bipartite graph then equality holds since for any V_i , i=1,2,3,.....

 $V_i - \{u\}$ is not a Split Neighbourhood set.

Theorem E [6] For any bipartite graph G without isolated points,

$$n \circ (G) = \alpha \circ (G) = \beta_1(G)$$

Theorem 2.6 For any bipartite graph G without isolated points,

$$n_{\circ}(G) = n_{\rm s}(G) = \alpha_{\circ}(G) = \beta_1(G)$$
(9)

Proof : This follows from Theorem 5.E [6] and Result (I)

Theorem 2.7 A Split Neighbourhood set S is minimal if and only if for each vertex $v \in S$, one of the following conditions is satisfied

- (i) v is an isolate in $\langle S \rangle$
- (ii) There exist a vertex $u \in V S$ adjacent to v but not adjacent to any vertex $w \in S$ adjacent to v.
- (iii) $\langle (V S) \cup \{v\} \rangle$ is connected.

Proof: Suppose *S* is minimal, on the contrary, if there exists $v \in S$ such that v does not satisfy any of the given conditions. Then $S' = S - \{v\}$ is a Neighbourhood set of G from (i) and (ii) and $\langle V - S' \rangle$ is disconnected from (iii) This implies *S*'is Split Neighbourhood set of G. This is a contradiction. This proves that necessity.

Sufficiency is straight forward.

Theorem F [1] : For any non trivial connected graph G,

$$\alpha \circ (G) + \beta \circ (G) = p$$

Theorem 2.8:

i) For any graph G,

 $(G) \le n_{\circ}(G) \le n_{s}(G) \le (\chi(G) - 1)\beta_{\circ}(G)$ (10)

Provided(G) ≥ 2 , where $\chi(G)$ is the chromatic number of graph G.

ii) If G is bipartite graph which is not totally disconnected, Then,

Where \overline{G} is complement of G.

Proof : Here we need to establish only the upper bound since lower bounds from I.

From Theorem 5.F [1] and the fact that $p \leq (G)(\beta \circ (G))$

(See [1]) we have,

$$p - \beta \circ (G) \le \beta \circ (G)(\chi(G) - 1)$$

i.e.
$$\alpha_{\circ}(G) \leq \beta_{\circ}(G)(\chi(G) - 1)$$

Hence (10) follows from (1) and the fact that $\alpha \circ (G) \leq \beta \circ (G)(\chi(G) - 1)$

If G is bipartite, (G) = 2. Also (10) implies $n_s(G) \le \beta \circ (G)$

Hence (11) follows from the facts that $n_s(G) \le \beta \circ (G)$ and $\beta \circ (G) \le \chi(\overline{G})$ (See [1]).

Theorem 2.9 For any graph G,

$$n_{\rm s}(G) = 1....(12)$$

If and only if there exits a cut vertex with degree p-1

Proof: Suppose v is cutvertex of G of degree p - 1, then $\{v\}$ is a Neighbourhood set. Further since $\langle V - \{v\} \rangle$ is disconnected. This implies $\{v\}$ is a Split Neighbourhood set. Hence $n_s(G) = 1$

Conversely, suppose $n_s(G) = 1$. Then, obviously there exists a cutvertex which is adjacent to all vertices. Hence there exists a cutvertex with degree p - 1.

Theorem G [6] For any (p,q) graph G,

$$p - q + q_{\circ} \le n_{\circ}(G) \le p - \Delta(G)$$

$$p$$

 $]\overline{\Delta(G)+1}] \le n \circ (G) \le p - \beta \circ (G) + p \circ$

Where q_{\circ} =minimum {q(<D>;D is a minimal dominating set of G}

 p° = the number of isolated vertices in G,

 β ° = set of independent vertices in G.

Theorem 2.10 For any connected (p, q) graph G,

Proof: The lower bounds in (13) and (14) follow from (1) and Theorem 5.G [6]. To prove upper bound in (14), we observe that (V - M) is a Split Neighbourhood set where *M* is the set of β_{\circ} independent points of G.

The lower bound in (13) and (14) is attained for the following graph in Figure 5

The upper bound in (14) is attained for any tree

The lower bound in (14) is attained by the following graph in figure 6.

Theorem 2.11

(i) $n_s(G) > p - \Delta(G)$ if there exist a non-cutvertex of degree p - 1

(ii) $n_s(G) \le p - \Delta(G)$ if G has no triangle.

Proof :

(i) Let G has a non-cutvertex v of degree p-1. Then $\Delta(G) = p-1$. Since v is the non-cutvertex, $n_s(G) \ge 2$. Hence $n_s(G) > p - \Delta(G)$.

(ii) If G has no triangle then $n_s(G) \le p - \Delta(G)$ from (9) and Theorem 5.G [6].

Now we obtain a Nordhaus-Gaddum type result.

Theorem 2.12 Let G be a graph such that both G and \overline{G} are connected, then

 $n_{\rm s}(G) + n_{\rm s}(\bar{G}) \le p(p-3)$(15)

Further the bound is attained if and only if $G = P_4$

Proof: We have $n_s(G) \leq \alpha \circ (G)$ from (3).

Since both G and \overline{G} are connected, $\Delta(G)$, $\Delta(\overline{G})$

This implies $\beta \circ (G), \beta \circ (\overline{G}) \ge 2$.

Hence $n_s(G) \leq p-2$

$$= 2(p-1) - p$$
$$\leq (2q-p)$$

Similarly $n_s(\bar{G}) \leq 2\bar{q} - p$

Thus $n_{s}(G) + n_{s}(\bar{G}) \le 2(q + \bar{q}) - 2p$

$$\leq (p-1) - 2p$$
$$= (p-3)$$

Suppose the bound is attained, then $n_s(G) = 2q - p$ and $n_s(\overline{G}) = 2\overline{q} - p$. This implies q and $\overline{q} < p$. Hence and \overline{G} are trees. i.e. $G = P_4$

Now we will establish a relation between Split Neighbourhood number and maximum Neighbourhood number.

Theorem 2.13 Let G be a graph with $\beta \circ (G) \geq 3$ and possess no triangles.

Then, $n_{\rm s}(G) \le n_{\rm m}(G)$(16)

Proof :Let S be a maximal Neighbourhood set of G.Then $\langle V - S \rangle$ is totally disconnected with at least two vertices. Thus S is a Split Neighbourhood set. Hence (16) holds.

Theorem H [7] For any graph G,

$$n_{\rm m}(G) \leq \alpha \circ (G) + 1$$

Theorem 2.14 Let *G* be a graph without triangle, then

 $n_{\rm m}(G) \le n_{\rm s}(G) + 1$(17)

Proof: The Proof of (17) follows from (9) and Theorem 5.H [7].

REFERENCES

- [1] F.Harary, Graph-Theory, Addison-Wesley Reading Mass, 1969.
- [2] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcle Dekker, Inc, Newyork, 1997.
- [3] V.R.Kulli and B.Janakiram, The maximal domination number of a graph, Graph Theory, Notes of New York, New York Academy of Sciences, 13: 11-13, 1997.
- [4] V.R.Kulli and Janakiram, The split domination number of a Graph, Graph Theory, Notes of New York Academy of Sciences

XXXII: 16-19, 1997.

[5] E.A. Nordhaus And J.W. Gaddum, On complementary graphs, Amer, Math Monthly, 63: 175-77, 1956.

- [6] E. Sampathkumar and P.S. Neeralagi, The neighbourhood number of agraph, Indian J. Pure Appl. Math, 16: 126-132, 1985.
- [7] N.D. Soner, B.ChaluvarajuAndB.Janakiram. The maximal neighbourhood number of a graph. Far East J. Appl. Math, 5: 301-307, 2001.