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Abstract  

This research utilizes remote sensing techniques and incorporates NDVI-based classification methods to 
estimate crop evapotranspiration (ETc) in the region of Bagpath, located in Western Uttar Pradesh. The 
approach employs NDVI profiles to accurately map sugarcane-wheat and rice-wheat cropping systems, 
achieving an accuracy of 86.86% for Kharif crops and 79.72% for Rabi crops. The potential 
evapotranspiration exhibits seasonal variations, characterized by significant peaks in Kcb values between 
the months of September and February for both systems. The research examines the variation in ETc, 
ranging from 3.09 to 6.87 mm day−1, throughout the period of June 2017 to April 2018, with a specific 
focus on the water requirements for cultivating sugarcane. The dynamics of water stress, as shown by 
WS_LSWI data, exhibit a correlation with the various phases of crop development, therefore emphasizing 
the influence of harvesting operations on the levels of water stress. 

 
1. Introduction  

Agriculture has significant importance across all economic sectors due to its susceptibility to water 
constraint. At present, the agricultural sector is responsible for around 70% of the total worldwide 
freshwater withdrawals. Water has a pivotal role as an essential element in the process of food production. 
Given the substantial water transpiration demands associated with biomass production, it would not be 
inaccurate to assert that agriculture serves as both a catalyst and a casualty of water shortage. The 
exponential increase in population has resulted in significant environmental consequences due to the 
escalating demands placed on natural resources. The potential effects of climate change on water supplies 
and water demand, as well as the influence of bioenergy generation on agriculture, are subjects that now 
lack certainty. Climate change has the potential to modify hydrological patterns and the accessibility of 
freshwater resources, hence affecting both rain-fed and irrigated agricultural practices (FAO, 2008; FAO, 
2011a). There has been seen an augmentation in precipitation levels within temperate regions, along by a 
decline in precipitation within semi-arid areas. Additionally, there has been noted a heightened variability 
in the distribution of rainfall, coupled with an overall rise in temperature. The aforementioned factors have 
a distinct influence on agriculture in tropical and sub-tropical regions. Changes in runoff in rivers and 
recharging of aquifers have a significant impact on the availability of water, hence exacerbating the strain 
on water resources caused by human activities. 

India has a significant scarcity of water resources, as it accommodates around 16.0 percent of the global 
population but possesses just 4.0 percent of the available fresh water suitable for use. The irrigation industry 
is the largest consumer of water resources. Approximately 80% of the global water resources are allocated 
for the purpose of irrigation. In India, irrigation accounts for almost 80% of the used water resources. The 
projected water resources of India amount to 4000 cubic kilometers, based on the country's geographical 
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size of 3.3 million square kilometers and an average annual rainfall of 1170 mm. Approximately half of the 
water undergoes various processes such as evaporation, percolation, and subterranean flows towards the 
seas, resulting in a loss. Consequently, only a total of 1953 Billion Cubic Meters (BCM) of water is 
accessible. According to Phansalker and Verma (2005), the presence of water is subject to temporal and 
spatial fluctuations, resulting in a further reduction to 1086 BCM. According to estimates, the Annual Water 
Resource, which measured 2214 cubic meters in 1996, is projected to decrease to 1496 cubic meters by the 
year 2025. According to Gulati et al. (2005), the Developed Water Resource (DWR) accounts for about 
25% of the total accessible water resource. 

Low water availability limits plants. Stomata regulate plant water, oxygen, and carbon dioxide flow. Water 
stress causes stomata to shut to save water, limiting the oxygen, water, and carbon dioxide exchange route 
and decreasing photosynthesis (Porporato et al., 2001). Thus, water stress affects leaf development more 
than root growth because roots can adjust. Reduced photosynthesis due to water scarcity reduces crop 
growth and development. Soil moisture, canopy temperature/evapotranspiration (ET), leaf water content, 
and LWP affect crop water stress. 

Water stress detection helps farmers reduce output losses. Remote sensing and ground-based methods may 
identify water stress. 

Traditional stress assessment methods include predawn leaf water potential (Dixon, 1914), leaf pigment 
concentration (Lichtenthaler, 1987), leaf chlorophyll fluorescence (Muller, 1874) and ET (Priestley and 
Taylor, 1972). Predawn leaf water potential estimation employs pressure chamber. This method has 
measured tree and shrub water relations for 40 years. Manual operation is sluggish and laborious. Leaf 
water content approach analyzes plant water status by measuring relative leaf water content. Most plant 
water is in mesophyll cells. The ratio of fresh, dry, and turgid leaf weights determines relative leaf water 
content. This approach is time-consuming since the water potential difference between stressed and non-
stressed plants is largest in the morning. Leaf pigment concentration approach assumes plant pigment 
concentration changes with species, phenology, and natural and human stress. Chlorophyll levels are higher 
in healthy plants and lower in stressed ones. Traditional chemical methods involve destructive sample and 
time-consuming laboratory studies, whereas chlorophyll meters are simple, portable, and fast. Leaf 
chlorophyll fluorescence is being employed to study photosynthetic equipment. This approach employs a 
portable optical equipment and fluorescence meter. Photosynthesis is dependent on light, water, and 
nutrients, which cause plant stress. Thus, this device is a useful diagnostic of plant stress because 
Chlorophyll fluorescence changes before tissue degradation is noticed in plants, allowing stress to be 
diagnosed before physical damage. The downside is that this method does not produce commercial 
instruments. Plant ET is measured with lysimeters. 

All ground-based measurements can quantify plant water stress at ground level or local regional level, but 
not at large geographical scales like remote sensing. Either ground measurement can ground truth remote 
sensing applications. 

Remote sensing for plant and environmental research became popular in the 1980s.Remote sensing 
provides accurate, quantitative, and timely crop condition data at a lower cost than field approaches (Shen 
et al., 2009). Remote sensing detects crop growth, stress, and assists agricultural development decisions 
(Shen et al., 2009). The spectral characteristics of vegetation are determined by leaf internal structure and 
elements like water, nitrogen, cellulose, and lignin absorption and scattering. Leaves' cellular structure and 
water content are identified in near and mid-infrared, while their colors are recognized in visible band. 

Chlorophyll and water content are key plant stress indicators. Stressed flora has less chlorophyll, which 
affects leaf pigment light absorption. Therefore, it directly impacts plant spectral signature by lowering 
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green band reflection and increasing blue and red band reflection, modifying normal plant spectral 
signature. Thus, Visible, Near Infrared (NIR), SWIR, and TIR bands may detect water stress. Vegetation 
water stress index (VWSI) and Land Surface Wetness Index (LSWI) are SWIR and NIR indices (Ghulam 
et al., 2007), while Crop Water Stress Index (CWSI) and Water Stress Index (WSI) are TIR indices. 

Precision agriculture depends on irrigation scheduling to avoid water stress and maximize production under 
restricted water circumstances, hence satellite monitoring of vegetation water stress is crucial. This research 
used optical data to diagnose sugarcane water stress in Bagpath, western UP. 

2. Study Area 

The study area includes Bagpath, located in Western Uttar Pradesh. The Western U.P region makes a 
significant contribution to the overall food grain output, accounting for 34 percent at the state level and 6 
percent at the national level. The prevailing agricultural produce in this area is sugarcane. 

The research region is situated within the latitudinal range of 28.8 degrees to 29 degrees and the longitudinal 
range of 77 degrees to 77.5 degrees. The western region is geographically demarcated by the presence of 
the Yamuna River, which serves as a natural boundary separating it from the neighboring states of Haryana 
and Delhi. The research was carried out in the Bagpath district located in western Uttar Pradesh. 

 

 

Fig 1. Location Map of the study area 
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2.1 Soils 

Western UP soil is coarse-to-medium alluvium and somewhat alkaline. Their dark gray color indicates 
considerable organic matter. Loam and silty clay loam cover much of the terrain. 2016 (Nitika et al.) 

 

2.2 Farming Method 

Farmers' main business is crop production. This area also farms dairy. Agro-horticulture and agro-forestry 
are other growing agricultural industries in this area. Sugarcane dominates this region's commercial crop. 
Due to delayed sugarcane harvesting, wheat field preparation begins in November and lasts until the second 
week of December. Over 90% of land is irrigated wheat, which receives 4–5 irrigations. 2016 (Nitika et al.) 

 

3.  Materials and  Methodology 

Evapotranspiration of crops ETc provides the foundation for agricultural water needs assessment and 
irrigation control. This study evaluated ETc using satellite-derived ETo and Kcb. ETc was calculated for 
the whole research region after satellite image preprocessing. ETo is most often calculated using the FAO-
56 technique, which is retrieved daily from MOSDAC. NDVI is used to determine the basal crop coefficient 
Kcb, as detailed below. 

3.1 Data Used 

Satellite products, supplementary data, and software were employed to fulfill the study's goal. 

3.2 Remote sensing data 

Table 3.2 lists the satellite dataset utilized in this investigation.1. AWIFS data was unavailable in February, 
March, and April 2018, hence Sentinel data was utilized. 

S. No Data Type Date of Acquisition Resolution 

1 Sentinel-2A 

25th April 2018 

26th March 2018 

14th February2018 

10 m (Resampled to 56 m) 

2 AWiFS 

4thJune 2017 

27th September 2017 

17th October 2017 

20th November 2017 

18th December 2017 

56 m 
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30th January 2018 

3 
INSAT-3D 
(PET_Daily) 

8th April 2017 

11th May 2017 

4th June 2017 

27th September 2017 

17th October 2017 

20th November 2017 

18th December 2017 

30th January 2018 

5 km (Resampled to 56 m) 

4 
MOD04, 05, 08 
Products 

For Aerosal Optical Depth, 
Water Vapour and Ozone 

Source Giovanni(Average 
value data) 

 

Table 3.2 Details of satellite data products used in this Study 

 

 

 

 

 

 

 

 

 

 

Fig 2. Methodology flowchart 
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3.3 Basal Crop Efficient 

Estimating crop ETc for irrigation scheduling using crop coefficient methods is common. Generalized crop 
coefficient curves in the literature only estimate ETc for "optimum" crop conditions within a field, which 
must be modified for local conditions and cultural practices and adjusted for seasonal crop and weather 
variations. Thus, generalized crop coefficient uncertainties may lead to ETc predictions that are 
considerably different from real ETc, which might lead to poor irrigation water management. Crop 
attributes like percent cover and leaf area index may be modeled using vegetation indices (VIs) to quantify 
real-time crop fluctuations from remotely-sensed VI measurements. VIs can also predict the basal crop 
coefficient (Kcb) for maize and cotton, according to limited studies. This study estimated Kcb using NDVI 
measurements. 

𝑲𝒄𝒃 = 𝑲𝒄𝒃 𝒎𝒂𝒙
(𝑵𝑫𝑽𝑰ି𝑵𝑫𝑽𝑰𝒎𝒊𝒏)

(𝑵𝑫𝑽𝑰𝒎𝒂𝒙ି𝑵𝑫𝑽𝑰𝒎𝒊𝒏)
  (1) 

Where 𝑲𝒄𝒃 𝒎𝒂𝒙 is Basal crop coefficient and 𝑲𝒄𝒃 𝒎𝒂𝒙 is Basal crop coefficient at effective full ground cover 
i.e.,  (Hunsaker, 1994) 

 

3.4 Evapotranspiration potential 

 

INSAT 3D is a geostationary meteorological satellite launched in 2013 as an exclusive INSAT spacecraft. 
This radiometer has four bands: wide VIS (0.52-0.75), SWIR (1.55-1.70), MIR (3.8-4.0), WV (6.5-7.0), 
and thermal TIR1(10.2-11.2), TIR2 (11.5-12.5) with 19 sounder channels. VIS and SWIR have 1 km x 1 
km spatial resolution, whereas MIR, WV, and two thermal IR bands have 4 km x 4 km. INSAT 
Meteorological Data Processing System (IMDPS) automates ‘full-globe’ and ‘sector’ data products in all 
bands at half-hour intervals at 4 km spatial resolution. Daily purchases are limited to 48. 

Evapotranspiration (ET) drives the hydrological cycle. ET is unique in its position as a link between the 
energy and water cycles. Solar radiation, wind speed, air temperature, and vapour pressure deficit affect 
ETo. Solar radiation is the most sensitive, affecting ETo variability by 60-70%. PET, also known as grass 
reference ETo, is the quantity of water transferred per unit time to atmosphere from a water-non-limiting 
surface covered with evenly and actively growing short grass like Alfalfa. ETo is the atmospheric 
evaporative demand for a given climate. Water stress results from moisture deficiency. Reference Evapo-
transpiration is a hydrological and agricultural variable. It is a crucial input in soil water balance models 
together with precipitation. Many of these models use daily or hourly evapotranspiration data to predict 
plant water needs. The regional water demand would vary by agroclimatic conditions and agricultural 
season. Space rainfall and ETo may enable rainfed agriculture monitor water shortfall and excess 
throughout growing season. PET product accuracy is 80-90% (INSAT-3D Manual, 2015). 

3.5 Crop Evaporation Transmission 

 

Crop ETc is the evapotranspiration of a disease-free crop produced in wide fields with plenty of water and 
fertilizer (Doorenbos and Pruitt, 1977). Calculating soil water balance and irrigation schedule requires ETc 
estimation. Weather and crop conditions determine ETc. ETc is mathematically represented as 〖𝑬𝑻𝑪 =

 𝑲𝑪 ∗  𝑬𝑻𝑶  (2) 
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Kc is the crop coefficient, which varies by crop and growth stage, and ETo is the reference crop 
evapotranspiration. 

3.6  Land Surface Wetness Index 

 

LSWI assesses stress using NIR and SWIR. This measure is sensitive to soil background and total 
vegetation liquid. LSWI was estimated using this equation:  

  LSWI=NIR-SWIR/NIR+SWIR       (3) 

Water stress scalar (Ws) was calculated using estimated LSWI (Xiao et al., 2005).  

 𝑾𝑺 =  
𝟏ି𝑳𝑺𝑾𝑰

𝟏ା𝑳𝑺𝑾𝑰𝒎𝒂𝒙
                                       (4) 

Where LSWI is pixel value and LSWImax is maximum pixel LSWI value for growth season. 

4. Results and Discussion 

4.1 Crop discrimination 

Each crop has a distinct spectral signature, therefore remotely sensed data can distinguish crops. Typical 
crop spectral reflectance displays pigment absorption in visible area (0.62-0.68 m) and significant near 
infrared reflection owing to leaf cellular structure. Red absorption and near-infrared reflectance indicate 
crop health (Navalgund et al., 1991b).  

A rule-based classification analysis identified and distinguished rice, sugarcane, and wheat crops from other 
land use/land cover groupings. Rule-based feature selection using basic mathematical logics is successful. 
For crop discrimination, AWiFS temporal NDVI was utilized to create rules based on NDVI values of 
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various seasons, such as September. The transformation NDVI*127.5+127.5 linearized NDVI values 
between 0-255 (Ray S S et al., 2000). 

Fig 3. Shows the crop inventory map of Kharif Season & Rabi Season 

4.2 NDVI Variation Throughout the Crop Season 

A time-series of NDVI was created from all 9 AWiFS dates throughout crop growing seasons. Figure 4 
show the 2017–2018 Kharif and Rabi NDVI temporal and geographical variance in the research region. 
NDVI peaks in November, whereas Rabi season (November–April) peaks in February. The greatest 
NDVI score indicates crop peak growth in Kharif and Rabi seasons. Kharif season had a higher average 
NDVI than Rabi season, perhaps owing to factors that accelerated crop growth: Higher rainfall (south-
west monsoon), increased photosynthesis due to longer sunny hours, and wider crop area in Kharif 
season. 
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Fig 4. Spatial distribution of NDVI for June 2017 to April 2018 

 

 

Fig 5. Temporal 
variation in NDVI for 
sugarcane–wheat 
cropping system   
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Fig 6. Temporal variation in NDVI for rice–wheat cropping system 

The Normalized Difference Vegetation Index (NDVI) exhibited variability in relation to different crops and 
their phonological progression throughout the course of the growing season. The temporal fluctuations in 
NDVI for the sugarcane-wheat cropping system and the rice-wheat cropping system are shown in Figure 5 
and 6, correspondingly. Figure 5.23 clearly demonstrates a decrease in NDVI values during December 
2017. This decline corresponds to the development of wheat throughout the winter season after the harvest 
of sugarcane, as well as the early vegetative stage of sugarcane. The majority of the sugarcane crop was 
gathered in the month of December under the sugarcane-wheat agricultural system. Furthermore, a well-
defined Normalized Difference Vegetation Index (NDVI) curve was found for the rice-wheat cropping 
system (refer to Figure 6). This curve clearly illustrates the trend of NDVI values while the rice and wheat 
crops undergo continuous phonological growth. These fundamental factors have effectively distinguished 
between the two systems. The observed NDVI patterns in this study exhibit similarities to the NDVI 
patterns reported by Kumari et al. (2013) in the context of sugarcane-wheat and rice-wheat cropping 
systems. 

 

4.3 Basal Crop Coefficient 

NDVI was used to derive the basal crop coefficient. The spatial representation of maps is below. Kcb and 
ETc fluctuated with crop and phenological development throughout the season, affecting crop water 
requirements. Fig.7 shows the temporal change of Kcb in Rice-Wheat and Sugarcane-Wheat cropping 
systems. Fig.7 show a fall in November and December 2017 owing to rice harvesting from Kharif season 
and a rise in Rabi season wheat transplanting. Rabi season adopts same profile. When temporal profile 
peaks, crop plant growth is maximum, hence water requirements are higher. The rice-wheat cropping 
system peaked in September and February with Kcb values of 1.2 and 1.23. In sugarcane-wheat cropping 
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system, Kcb temporal profile peaks in September and February with values of 1.24 and 1.03, although 
wheat peak value is low, perhaps because to mixed pixel combination with immature sugarcane plantings.  

 

Fig 7. Spatial distribution of Kcb for June 2017 to April 2018 
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Fig 8 Temporal variation in Kcb for rice–wheat & sugarcane–wheat cropping system 

 

4.4 Potential Evapotranpiration 
The daily PET data downloaded from MOSDAC with a resolution of 5 km is resampled to 56 m resolution 
of AWiFS data. This is a daily average data product and the units of the PET data is in mm/day. The 
accuracy of the PET product is about 80-90% (INSAT-3D Manual, 2015). The temporal variation of daily 
PET as shown in figure 9. In Kharif and Rabi season the average value of PET in ranges between 4.41 to 
5.91 mm/day and 3.30 to 5.42 mm/day 
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Fig. 9 Spatial distribution of PET (mm/day) for June 2017 to April 2018 

 

 

4.5 Crop Evapotranspiration  

The daily data from the PET (Potential Evapotranspiration) has been multiplied by the base crop coefficient 
(Kcb). The analysis of actual evapotranspiration (ET) based on the baseline crop coefficient and potential 
evapotranspiration (PET) reveals a marginal increase in ET during the month of November, followed by a 
fall in February. This may be attributed to the growth of sugarcane in November, with a significant portion 
being harvested by December. Lower readings are being recorded in February owing to the early vegetative 
development of wheat. The monthly photos exhibit a discernible pattern in the geographical distribution of 
monthly evapotranspiration. The evapotranspiration (ETc) exhibited a range of 3.09 to 6.87 mm day−1 
throughout the period from June 2017 to April 2018. It is noteworthy that the mean ET value for sugarcane 
cultivation was determined to be 4.29 mm day−1. Sugarcane, a significant agricultural commodity in the 
nation, necessitates a substantial amount of water over its whole growth cycle, which typically spans 12 to 
18 months. The specific duration may vary based on the agro-climatic areas, which range from sub-tropical 
to tropical. The crop's yearly water need in sub-tropical states like as Uttar Pradesh, Punjab, Haryana, and 
Bihar has been estimated to be 2000 mm (Shukla, S.K, 2017). The Food and Agriculture Organization 
(FAO) suggests that the range for this requirement falls between 1500-2500 mm. The estimated annual 
water demand for sugarcane in our research region is 2316.6 mm over a period of 18 months, and 1544.4 
mm over a period of 12 months. The graphic shown below illustrates the spatial distribution of 
evapotranspiration (ET) and its temporal change. 
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Fig. 10 Spatial distribution of Daily ET (mm/day) for June 2017 to April 2018 
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4.6 Land Surface Wetness Index (Lswi) 

Land surface wetness index is a linear combination of NIR and SWIR bands. LSWI value ranges between 
-1 to +1 (Xiao et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Spatial distribution of LSWI for November 2017 to April 2018 
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4.7 Water Scalar Land Surface Wetness Index (Ws_Lswi) 
 

The index is characterized by a numerical scale ranging from 0 to 1, with 0 denoting the absence of stress 
and 1 representing the presence of severe stress. The time distribution of water scalar may be noticed in 
Figure 5.71. Based on the findings from the period spanning June 2017 to January 2018, the observed trend 
may be attributed to the successive cultivation of kharif crops followed by rabi crops, leading to increased 
strain on the agricultural system. Subsequently, from February to April, the recorded values indicate a 
decline, which can be attributed to the commencement of crop harvesting during this period. In the month 
of June, a stress level of 0.56 was detected. However, in the subsequent months of September and October, 
the stress level exhibited a declining trend due to the increased vegetative development of sugarcane and 
rice crops. In November, there was a modest rise in the stress level, and by December, the value reached 
0.50. This increase in stress may be attributed to the harvesting activities of rice and the presence of older 
sugarcane farms. The water scaler values show a decline subsequent to December, indicating a decrease in 
water stress. This trend aligns with the development of wheat crops occurring in January, February, and 
March. However, in April, a greater level of stress is noticed, as indicated by a value of 0.69, which may 
be attributed to the harvesting of wheat during this period. 

 

 

 

 

 

 

 

 

 

Fig. 12 Temporal variation in WS_LSWI  
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Fig. 13 Spatial distribution of WS_LSWI for June 2017 to April 2018 
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CONCLUSIONS 

The current work used a remote sensing-based technique to estimate crop evapotranspiration (ETc) from 
Bagpath, located in Western Uttar Pradesh. A rule-based classification using the Normalized Difference 
Vegetation Index (NDVI) was conducted to classify Kharif and Rabi Seasons. This included establishing 
thresholds for various classes within the research region. The resulting classification achieved an overall 
accuracy of 86.86% for Kharif crops and 79.72% for Rabi crops. The kappa coefficients for Kharif and 
Rabi crops were determined to be 0.81 and 0.712, respectively. The assessment of the NDVI profile 
effectively covers the growth season of the sugarcane-wheat and rice-wheat cropping system, allowing 
precise crop mapping within the designated research region. During the Kharif and Rabi seasons, the mean 
potential evapotranspiration (PET) varies from 4.41 to 5.91 mm/day and 3.30 to 5.42 mm/day, respectively. 
In the rice-wheat cropping system, a notable surge was seen between the months of September and 
February, with corresponding Kcb values of 1.2 and 1.23, respectively. The temporal profile of Kcb in the 
sugarcane-wheat cropping system exhibits peaks in the months of September and February, with 
corresponding values of 1.24 and 1.03, respectively. However, it is seen that the peak value of wheat is 
relatively lower, which might perhaps be attributed to the presence of mixed pixels resulting from the 
mixture of young sugarcane plants. The evapotranspiration (ETc) exhibited a range of 3.09 to 6.87 mm 
day−1 throughout the period spanning from June 2017 to April 2018. It is worth noting that the average ET 
value for sugarcane cultivation was determined to be 4.29 mm day−1. The estimated yearly water demand 
for sugarcane in our research region is 2316.6 mm over a period of 18 months and 1544.4 mm over a period 
of 12 months. The WS_LSWI data was collected between June 2017 and January 2018. In the month of 
June, a stress level of 0.56 was recorded. However, in the subsequent months of September and October, 
the stress level exhibited a downward trend due to the significant rise in vegetative development of 
sugarcane and rice crops. In November, there was a modest increase in stress levels, which may be attributed 
to certain factors. Finally, by December, the stress level reached a value of 0.50, likely due to the harvesting 
activities of rice and the presence of older sugarcane farms. The water scaler readings show a decline 
subsequent to the month of December, indicating a decrease in water stress. This decline coincides with the 
growing period of the wheat crop, which occurs mostly in the months of January, February, and March. 
However, in April, a greater level of water stress is detected, with a recorded value of 0.69. This increase 
in stress may be attributed to the harvesting of the wheat crop during this period. 
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