
APACHE KAFKA FOR EVENT-DRIVEN
ARCHITECTURE

MOHAMMED ANAS
Department of Computer Applications

RV College of Engineering
Bengaluru, Karnataka, India

mohammedanas.mca22@rvce.edu.in

Dr. B.H. CHANDRASHEKAR
Department of Computer Applications

RV College of Engineering
Bengaluru, Karnataka, India
chandrashekarbh@rvce.edu.in

Abstract—In the rapidly evolving landscape of
software development, the shift from monolithic
architectures to microservices and Event-Driven
Architecture (EDA) has introduced new complexities
and challenges in system communication. This paper
explores the strategic role of Apache Kafka in
addressing these challenges, focusing on its applications
in event tracking, retry mechanisms, asynchronous
processing, and inter-service communication. By
analyzing Kafka's advantages over traditional
messaging systems, we highlight its scalability,
durability, and low-latency characteristics that make it
a preferred choice for modern distributed systems.
Additionally, the paper delves into real-world industry
practices, offering insights into how leading tech
companies integrate Kafka into their infrastructures to
enhance reliability and resilience. We also examine the
common challenges encountered when deploying Kafka,
such as rebalancing issues, consumer group errors, and
message delays, providing practical solutions to these
problems. The findings presented here underscore
Kafka’s significance as a key enabler of robust and
scalable EDA in contemporary software systems.

Keywords—Apache Kafka, Event-Driven Architecture,
Microservices, Asynchronous Processing, Retry
Mechanism, Distributed Systems, Messaging Systems,
Scalability, Fault Tolerance, System Communication.

I. INTRODUCTION
The world of software technology is slowly

moving towards replacing monolithic systems with
microservices. This approach has proven to be more
systematic and maintainable to build sophisticated
systems. Even the tech giants are investing huge
resources into transforming their decade old systems
to usher in this new era. Similarly, we should consider
how communications are set up between systems, be
it monolithic(with external services) or microservices.
More so if there are many upcoming projects on
making the concept of communication between
systems more resilient and robust. One such tool is
Kafka, which can be implemented as an Event-Driven
Architecture approach for communication.

A. Different Communication Approaches
Following are some of the techniques and

approaches to make sure the conversation happens
between two services/systems.

First is the API communication,which is the most
commonly used approach for any kind of
communication. All communication performed
through HTTP and REST, comes under this category.
Basically, API communication is synchronous, but
later by utilizing webhooks a callback message can be
sent to the client asynchronously.

Second is the Event-Driven Architecture. As the
name suggests this is the type of communication that
takes place only when a desired state is achieved or
an event is triggered. This decouples the components
by making them react to events and reduce the
dependency on the server. The usages of message
queues, pub/sub model, event streams, etc fall under
being Event-Driven Architecture.

Third is by using a Shared Database. This type of
communication is used rarely where any information
transferred to other systems is done through inserting
and retrieving from a database that is common to both
the systems. But this technique has quite a bit of
drawbacks such as limiting to the communicated
message size, compromising of the database since it
is shared and others.

B. Importance of Event-Driven Architecture(EDA)
Event-Driven Architecture is a valuable and

efficient model in any software development, as it
increases the scope processing. EDA will help in
following areas:

● Decoupling of components
● Asynchronous processing
● Realtime processing
● Robust, Resilient and Fault Tolerance
● Scalability

C. Role of Kafka
Kafka plays an important role in enabling EDA.

Kafka was initially designed for distributed
streaming, which has now become a core component
in building real-time pipelines and distributed stream
processing applications. Kafka facilitates EDA by
providing a durable, scalable, and distributed log of
events. This makes kafka more ideal(subjective) for
EDA compared to others. The reason kafka is a better
EDA tool is mainly due to the Architectural design of
Kafka with its components.

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 10, 2024

ISSN NO : 1869-9391

PAGE NO: 293

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research

mailto:mohammedanas.mca22@rvce.edu.in
mailto:chandrashekarbh@rvce.edu.in
user
Textbox



D. Objectives
The objective of the work is to provide the

following:

● Discuss different implementations of EDA
using Kafka, including asynchronous
processing, handling callbacks, retry
mechanisms, and other key features.

● Identify use cases in industry practices
where Kafka is utilized effectively.

● Develop solutions to common production
problems with Kafka, such as rebalancing,
consumer group errors, and multiple
message consumption issues.

II.USE CASE

A. Event Tracking

Event tracking is a crucial aspect of modern
applications, where the need to monitor and analyze
user interactions across various services is
paramount. Kafka provides a robust solution for
centralizing and aggregating events happening across
multiple microservices. By utilizing Kafka, all
relevant events, such as click events, page landings,
and user interactions, can be collected into a central
analytics topic. This topic then streams the data to a
monitoring system, which processes and displays the
information on a dashboard in an analyzed format.
This centralized event tracking mechanism enables
real-time monitoring and analytics, offering insights
into user behavior, system performance, and potential
bottlenecks.

Fig: Event Analytics using Kafka

B. Retry Mechanism

Handling failures in distributed systems is a
challenging task, and manual intervention for
retries can lead to inefficiencies and downtime.
Kafka's retry mechanism is designed to overcome
these limitations by automating the retry process
for failed operations, such as API calls or other
processing tasks. The proposed approach involves
catching exceptions in a Kafka consumer that
needs to retry processing after a specific time. The
failed messages are then sent to a retry topic,
where the system checks the retry count and the
appropriate time for the retry.

If the retry count reaches zero, the message is sent
to a dead-letter topic for further analysis. If the
retry time is reached, the message is sent back to
the original topic for reprocessing. If not, the
message is placed in a delay-topic to wait until the
retry time is met. This automated retry mechanism
enhances system reliability and reduces the need
for manual intervention, ensuring that operations
are eventually completed or properly handled in
case of repeated failures.

Fig: Retry Mechanism flow

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 10, 2024

ISSN NO : 1869-9391

PAGE NO: 294

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



C. Asynchronous Processing

Kafka excels in enabling asynchronous
processing, which is essential for decoupling tasks
and improving system responsiveness. In this
proposed application, when an execution is
triggered, Kafka is used to send a message to a
process-topic, allowing the task to be executed
asynchronously. Instead of waiting for the process
to complete, the system can continue other
operations. Typically, a database is used as a
medium to track the completion status of the
process. When the database is updated to reflect a
pass or fail state, Kafka can trigger an appropriate
response that updates the client. This method
allows for efficient processing of tasks in parallel,
reducing delays and improving the overall
performance of the system.

Fig: Asynchronous process implementation

D. Communication across Services

Kafka's ability to facilitate communication across
services is one of its most significant advantages.
This application extends the concept of
asynchronous processing by enabling services to
communicate with one another through Kafka
topics.

Fig: Retry Mechanism flow

Fig: Two-way Communication using Kafka

In the proposed one-way communication
scenario, a scheduler service sends a message to
a Kafka topic that requires processing by another
service. The scheduler then remains inactive
while the processing service consumes the
message and executes the required task.

In the two-way communication scenario, after
processing the message, the processor sends a
response back to the scheduler through a
callback-topic. The scheduler, listening to the
callback-topic, receives the response and can
take further action. This setup allows for loose
coupling between services, enabling them to
interact without direct dependencies, thereby
improving the modularity and scalability of the
system.

III. COMPARISON

When comparing Kafka to other tools or methods for
implementing Event-Driven Architecture (EDA) and
microservices communication, several distinct
advantages make Kafka a preferred choice. Here’s a
breakdown of why Kafka is often chosen over other
alternatives:

A. Scalability
Kafka is designed to handle a massive amount of
data. It’s great for large-scale systems because you
can keep adding more brokers to your Kafka
cluster, which increases its capacity. This means
Kafka can handle millions of messages per second
without breaking a sweat. Traditional message
brokers like RabbitMQ or ActiveMQ are solid,
but they might struggle when dealing with the
kind of high throughput that Kafka can manage
easily.

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 10, 2024

ISSN NO : 1869-9391

PAGE NO: 295

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



B. Durability & Reliability
Kafka uses something called a distributed log,
which basically means it keeps all the messages
that get published and makes sure they’re
delivered reliably to the subscribers. Kafka also
has a replication feature that ensures your data is
safe even if some of the nodes fail. Other systems
like RabbitMQ also try to ensure durability, but
they usually do it through message
acknowledgment and persistence, which can slow
things down. Kafka’s approach is more
straightforward and efficient, making sure no data
is lost.

C. High Throughput with Low Latency
Kafka is built for speed. Its design allows it to
deliver a huge number of messages very quickly
and with minimal delay. This is largely thanks to
how Kafka partitions data so that consumers can
read from these partitions independently, reducing
bottlenecks. Traditional message queues might not
be as fast, especially when they’re trying to ensure
that messages are durable and acknowledged.
Kafka’s setup just tends to be quicker and more
efficient overall.

D. Decoupling of services
One of the best things about Kafka is how it
naturally decouples producers and consumers.
This means that producers can send data to Kafka
without needing to worry about who’s going to
consume it, and consumers can process that data
whenever they’re ready. This kind of decoupling
is really important in microservices architectures
because it helps keep services independent. While
other message brokers like RabbitMQ or
ActiveMQ can also do this, Kafka tends to make
it easier and requires less complex configurations
to achieve the same level of independence.

E. Replayability
A unique feature of Kafka is its ability to retain
messages for a set amount of time, which allows
consumers to replay those messages if needed.
This is super helpful for recovering from errors,
auditing, or handling late-arriving consumers.
Most traditional message brokers delete messages
as soon as they’re consumed, which means once a
message is processed, it’s gone for good. This
limits the ability to recover from mistakes or
reprocess data later. Kafka doesn’t have that
problem, which makes it much more flexible.

F. Community and Ecosystem support
Kafka has a huge and active community, along
with a strong ecosystem of tools and connectors.
This makes it easier to integrate Kafka with other
systems and get support when you need it. Other
message brokers have their own communities too,
but Kafka’s ecosystem is often more extensive,

which can make a big difference if you’re
working in a complex, distributed environment.

IV.CHALLENGES & SOLUTIONS

While Kafka is a powerful tool for implementing
Event-Driven Architecture (EDA) and facilitating
microservices communication, it’s not without its
challenges. However, understanding these challenges
and how to address them can ensure smooth and
effective Kafka deployments. Below are some of the
common challenges faced when working with Kafka,
along with practical solutions to overcome them:

A. Handling Consumer Groups
Consumer groups are a core concept in Kafka,
allowing multiple consumers to divide the work of
processing messages. However, issues like
consumer lag, rebalancing problems, and
consumer group coordination failures can arise,
leading to inconsistent message processing or
delays.
Solution:
● Monitoring and Alerts: Implement robust

monitoring for consumer lag and consumer
group status using tools like Prometheus,
Grafana, or Kafka’s own JMX metrics.
Setting up alerts can help you quickly
identify and address issues before they
impact the system.

● Rebalancing Tuning: Adjust the session
timeout and heartbeat interval settings for
consumers to ensure that rebalancing occurs
smoothly. This involves finding the right
balance between quick rebalancing and
stability in consumer group operations.

● Sticky Assignor: Use the sticky partition
assignor to minimize the number of
reassignments during rebalancing, which can
reduce the disruption caused by rebalancing
events.

B. Topic Pollution
In Kafka, messages might not always be
processed immediately due to network latency,
slow consumers, or backpressure in the system.
Additionally, creating multiple topics to handle
various scenarios, such as retries or dead-letter
queues, can lead to topic pollution, making
management more complex.
Solution:
● Backpressure Handling: Implement a retry

mechanism that uses delay topics or
exponential backoff strategies to manage
retries without overwhelming the system.
You can also use rate limiting to control the
flow of messages into the system.

● Topic Management: Establish naming
conventions and topic management policies

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 10, 2024

ISSN NO : 1869-9391

PAGE NO: 296

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



to prevent unnecessary topic creation. Use
compacted topics or partitions efficiently to
reduce the overhead of managing multiple
topics.

● DLQ and Retry Topics: Set up Dead Letter
Queues (DLQ) and retry topics effectively,
ensuring that messages that fail processing
can be retried or handled later without
affecting the main data flow.

C. Data Consistency
Kafka’s distributed nature can sometimes lead to
data consistency issues, especially when dealing
with duplicate messages or ensuring exactly-once
delivery semantics. This can be critical in
financial transactions or other sensitive data
processing scenarios.
Solution:
● Idempotent Producers: Enable idempotence

for Kafka producers to ensure that duplicate
messages are not produced in the event of
retries or network failures.

● Transactional Messaging: Use Kafka’s
transactional APIs to ensure that a series of
writes are either committed together or not at
all, which is crucial for maintaining
consistency.

● Consumer Side Deduplication: Implement
deduplication logic on the consumer side
using unique message keys or hashes to
ensure that duplicate messages are not
processed multiple times.

D. Rebalancing Issues
Rebalancing is necessary for distributing
partitions among consumers, but it can cause
interruptions in processing and lead to
inconsistent performance, especially in systems
with frequent rebalancing.
Solutions:
● Minimize Rebalancing Frequency: Tune

Kafka’s session.timeout.ms and
max.poll.interval.ms settings to
reduce unnecessary rebalancing events. By
extending these intervals, you can minimize
the frequency of rebalances.

● Use Cooperative Rebalancing: Consider
using Kafka’s cooperative rebalancing
protocol, which allows consumers to
rebalance partitions incrementally rather
than all at once, reducing the disruption
caused during rebalancing.

● Monitor and Optimize Consumer Lag: Keep
an eye on consumer lag and optimize
consumer configurations to ensure that all
consumers within a group are processing
messages efficiently, thereby reducing the
need for frequent rebalancing.

V. CONCLUSION

In this paper, we explored the robust capabilities of
Apache Kafka as a foundational tool for
implementing Event-Driven Architectures (EDA) and
facilitating seamless communication in microservices
environments. Kafka’s design as a distributed,
scalable, and fault-tolerant messaging system makes
it uniquely suited to handle the demands of modern,
complex software systems.

We began by examining various applications of
Kafka, such as event tracking, retry mechanisms,
asynchronous processing, and service
communication. These applications demonstrate how
Kafka can centralize and streamline the flow of
information across systems, enhance the reliability of
processes, and ensure that services remain decoupled
yet effectively coordinated.

Furthermore, we delved into the advantages of Kafka
over other messaging systems, particularly its
scalability, durability, low latency, and ability to
maintain high throughput under heavy loads. Kafka’s
ability to handle large-scale data streams with
minimal latency, coupled with its powerful features
like replayability and idempotence, positions it as a
leading choice for organizations looking to build
resilient, real-time systems.

However, working with Kafka is not without its
challenges. Issues such as consumer group errors,
message delays, rebalancing, and ensuring data
consistency require careful consideration and
proactive management. We discussed practical
solutions to these challenges, highlighting strategies
like monitoring, backpressure handling, and
leveraging Kafka’s built-in features like idempotent
producers and transactional messaging.

In conclusion, Kafka’s strengths in handling
event-driven communication and its versatility in
addressing a wide range of use cases make it an
indispensable tool for modern software architecture.
While it comes with its own set of challenges, the
benefits of implementing Kafka, especially in
large-scale, distributed systems, far outweigh the
difficulties. By understanding Kafka’s architecture
and applying best practices, organizations can build
more robust, scalable, and efficient systems,
ultimately driving greater innovation and resilience in
their technological infrastructure.

REFERENCES

[1] Peddireddy, K. (2023). Streamlining Enterprise Data
Processing, Reporting and Realtime Alerting using
Apache Kafka. International Symposium on Digital
Forensics and Security (ISDFS), 2023, 1-4.

[2] Pelle, I., Szőke, B., Fayad, A., Cinkler, T., and Toka,
L. (2023). A Comprehensive Performance Analysis of

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 10, 2024

ISSN NO : 1869-9391

PAGE NO: 297

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research



Stream Processing with Kafka in Cloud Native
Deployments for IoT Use-cases. NOMS IEEE/IFIP
Network Operations and Management Symposium,
2023, 1-6.

[3] Adila, R., Nusantara, A. B., and Yuhana, U. L. (2023).
Optimization Techniques for Data Consistency and
Throughput Using Kafka Stateful Stream Processing.
International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI), 2023,
480-485.

[4] Sayar, A., Arslan, Ş., Çakar, T., Ertuğrul, S., and
Akçay, A. (2023). High-Performance Real-Time Data
Processing: Managing Data Using Debezium,
Postgres, Kafka, and Redis. Innovations in Intelligent
Systems and Applications Conference (ASYU), 2023,
1-4.

[5] Vyas, S., Tyagi, R. K., Jain, C., and Sahu, S. (2022).
Performance Evaluation of Apache Kafka – A Modern
Platform for Real Time Data Streaming. International
Conference on Innovative Practices in Technology and
Management (ICIPTM), 2022, 465-470.

[6] Srijith, K. B. R., N, G., and M. R, A. (2022).
Inter-Service Communication among Microservices
using Kafka Connect. IEEE International Conference
on Software Engineering and Service Science
(ICSESS), 2022, 43-47.

[7] Hugo, Å., Morin, B., and Svantorp, K. (2020).
Bridging MQTT and Kafka to support C-ITS: a
feasibility study. IEEE International Conference on
Mobile Data Management (MDM), 2020, 371-376.

[8] Wu, H., Shang, Z., and Wolter, K. (2019). TRAK: A
Testing Tool for Studying the Reliability of Data
Delivery in Apache Kafka. IEEE International
Symposium on Software Reliability Engineering
Workshops (ISSREW), 2019, 394-397.

[9] Alaasam, A. B. A., Radchenko, G., and Tchernykh, A.
(2019). Stateful Stream Processing for Digital Twins:
Microservice-Based Kafka Stream DSL. International
Multi-Conference on Engineering, Computer and
Information Sciences (SIBIRCON), 2019, 804-809.

GIS SCIENCE JOURNAL

VOLUME 11, ISSUE 10, 2024

ISSN NO : 1869-9391

PAGE NO: 298

International Journal of Pure Science ISSN NO: 1169-9398ISSN NO : 1844-8135International Journal of Pure Science Research


