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Abstract: 
Navier-Stokes equations have been solved for the problem of conducting laminar 

source flow between two infinite non-conducting disks. The solution obtained embodies the 
solution for the source free flow between porous disks as well as that for source flow between 
non-porous disks. *. In magnetohydrodynamics, the source flow has not been given much 
attention.The solution for the MHD laminar source flow is obtained by perturbating the 
creeping flow solution that is valid for small value reduced Reynolds number Re

*. The 
asymptotic solutions are also obtained for creeping flow and other velocity perturbation. 
Expressions for velocity, pressure and shear stress are obtained. 
Key Words:  Velocity, stress, Renolds number, Pressure,NS-Equation 
                                               
                                           1. INTRODUCTION 

 
The steady laminar source flow of an incompressible conducting viscous fluid 

between two porous disks is considered in the presence of a transverse magnetic field. In 
hydrodynamics the laminar source flow between two parallel stationary non porous disks has 
been examined by Peube [1] and Savage [2] and Sourieau [3] and their theoretical result agree 
with experimental results of moller [4]. Terril and Cornish [5] have considered the radial flow 
of a viscous incompressible fluid between stationary porous disks. The steady flow between 
porous disks numerically has been discussed by Rasmussen [6]. Wang and Watson [7] have 
investigated the radial flow between rotating disks with injection on the porous disk and made 
a comparison of the previously known analytical result with numerical result. Source flow 
between two parallel non-porous disks rotating at the same velocity has been investigated by 
Breitner and Polhausen [8] and by Peube and kreith [9]. The same problem with disks rotating 
at different speeds has been studied by Kreith and Viviand [10]. Elkouh [11] has investigated 
the laminar source flow between parallel stationary porous disks where he obtains a solution 
which is valid for small values of wall Reynolds number RW and for small value of reduced 
Reynolds number Re

*.  
The result of the present investigation may find application in gaseous diffusion, 

boundary cooling and lubrication of porous MHD bearing etc. 
                                     
                                     2. FORMULATION OF THE PROBLEM 

 

We consider cylindrical polar coordinates ( r , , z)  and A uniform incompressible 

fluid having density , kinematic viscosity , electrical conductivity,  the axially symmetric 
steady flow between two infinite stationary porous disks. Which is lie in the plane z a   

and z a   (fig. 1) u, v  are velocity components in the directions r  and z . So that 

u u( r z)  and v v( r z) . A source of strength Q is placed at the centre of the channel 

formed by the disks 
The governing equation of motion of steady, axisymmetric flow, for small magnetic 

Reynolds number based on the radius L are 
22 2
0

2 2 2

B uu u 1 p u 1 u u u
u v

r z r dr r r r z

      
                

 …(2.2A) 
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2 2

2 2

v v 1 p v 1 v v
u v

r z z dr r r z

      
             

 …(2.2B) 

u u v
0

r r z

 
  

 
 …(2.2C) 

 

 
Fig. 1 : Flow Between Porous Disks 

The fluid is injected or extracted with uniform velocity V at the disks. 
The boundary conditions are 
u(r, a) 0   

v(r, a)      and 
a

2

a

2 r ud z 2 r V Q


     …(2.2D) 

We introduce the following dimensionless quantities 

r z
r z

a a
   

ua va
u v 

 
 

2

2

pa
p 


 …(2.2E) 

with the help of (2.2E) the governing equation of motion of steady reduce to 
2 2

2
2 2 2

u u p u 1 u u u
u V M u

r z r dr r r r z

      
             

 …(2.2F) 

2 2

2 2 2

v v p v 1 v v
u v

r z z dr r r z

      
           

 …(2.2G) 

u u v
0

r r z

 
  

 
 …(2.2H) 

where 
2 2
02 B h

M





 is Hartmann number square 

equation (2.2D) and (2.2E) give the modified boundary conditions in the following 
form 
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2

W

1 2
e

1

u(r, 1) 0

M
v(r, 1) R

N

M r 2R
udz

N r




  
   



  




 
 …(2.2I) 

where 
2
0B h

N
V





 is interaction parameter, 

 Re is source flow Reynolds number 
and  RW = is the well Reynolds number, which is taken positive for injection and 

negative for suction. 
Now we introduce a dimensionless stream function in the form 

1
u

r z





 …(2.2J) 

1

r r


  


 …(2.2K) 

Satisfying the equation of continuity. 
We assume the following expansion for  and P which are vaid for small values of 

e*
e 2

R
R

r
  
 

, that is, at large distance from the source 

 
2

e2
1 e 0 12

1 M R
r f (z) R f (z) f (z)

2 N r


       
  …(2.2L) 

and 
2

e2
1 e 0 12

1 M R
p r h (z) h(z) R h (z)ln r h (z)

4 N r


       
  …(2.2M) 

equation (2.2J), (2.2K) and (2.2L) give the expansions for velocity components u and 
v 

 
2

e e' ' '
1 0 12

1 M R R
u r f f f

2 N r r


      
  …(2.2N) 

and 

22
e

1 e 12

M R
f R 2 f

N r


        
   

  …(2.2O) 

where the primes denote differentiation with respect to z. 
Equations (2.2I), (2.2J), (2.2K) and (2.2L) give the modified boundary conditions for 

the functions fn and their derivatives are – 
'
nf ( 1) 0 n 1,0,1,2,      

nf ( 1) 0 n 1,2,     

 1f ( 1) 1     

and 0 0F (1) F ( 1) 2    ….(2.2P) 
we choose 
 0 0f ( 1) 1, so that f (1) 1     …(2.2Q) 

To obtain the solution for the above set of equations, we substituting the expansions 
of p, u and v in equations (2.2F) and (2.2G) and equating the coefficients of like powers of Re. 
This gives us an infinite set of system of simultaneous ordinary differential equation of which 
the first system is non-linear. The first three system considered here are : 

System – I : 
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2

2''' '' ' 2 '
1 1 1 1 11

M 1
f f f f h M f

N 2
    

      
 

 h-1 = Constant …(2.2R) 

and 
2 2

' 2
1 1

M 1 M
h f f Constant

N 2 N
 

 
     

 …(2.2S) 

where the constant is determined from a known pressure at a point in the flow. 
System – II : 

 
2

''' '' 2 '
0 1 0 0 0

M
f f f h M f

N
    

 h0 = constant …(2.2T) 
System – III : 

  
2

2''' ' ' '' '' ' 2 '
1 1 1 1 1 1 1 1 10

M
f f f f f f f 2h f M f

N
          

 h1 = constant …(2.2U) 
                                        
                                      3. SOLUTION OF THE PROBLEM 

 
Asymptotic solution for RW < < M2 
The sets of differential equation in the above system have been solved by a 

perturbation scheme, expanding the different unknown function fn and hn in the powers of 
1

N
 

as follows : 

 n n,
0

1
f f

N






   

and n n,
0

1
h f

N






   …(2.3A) 

where fn, and hn, are independent of N. 
The boundary conditions to be satisfied by fn, are 

 '
n,f 1 0 for n 1,0,1,2 and all       

 n,f 1 0 for n 1,2 and all      

 n,0f 1 1 for n 1,0      

  n,f 1 0 for n 1,0 and 1       …(2.3B) 

Solution for system I : 
Since from equation (2.3A) we have 

 1 1,0 1,1 1,2 1,32 3

1 1 1
f f f f f

N N N
          …(2.3C) 

and 1 1,0 1,1 1,2 1,32 3

1 1 1
h h h h h

N N N
           …(2.3D) 

Substituting the expansions of f-1 and h-1 from (2.3C) and (2.3D) in the equation 
(2.2R) and equating the coefficient of like power of 1/N. The gives us the following set of 
linear ordinary differential equations 

 ''' 2 '
1,0 1,0 1,0f M f h     …(2.3E) 

 
2''' 2 ' 2 ' ''

1,1 1,1 1,1 1,0 1,01,0
1

f M f h M f f f
2

    
     
 

 …(2.3F) 
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The analysis is confined to first order, since the second order perturbation is 
algebraically complicated and also the effect of second order terms compared to first order 
terms are negligible. 

Solving (2.3E), we get 

 
1,0

1,0 1 2 3 2

h z
f (z) C C cas h Mz C sin h Mz

M


      …(2.3G) 

Constant are determined by using the boundary conditions (2.3B) that are 
 1,0 1,0f (1) 1 ; f ( 1) 1      

 ' '
1,0 1,0f (1) 0 ;f ( 1) 0     

Solution (2.3G) satisfying these conditions is 

  1,0
A

f Mzcosh M sin h Mz
M

    …(2.3H) 

  '
1,0f A cos h M cosh Mz    …(2.3I) 

where 
M

A
M cosh M sin h M




 

and 
3

1,0
M

h
tan h M M

 


 

Again solving (2.3F), we get 
 1,1 4 5 6 1f (z) C C cosh Mz C sinh Mz a      

 
1,12

2 3 4 2

h z1
a z a zcoshMz sinh2Mz 9Mz a z sinhMz

2 M
       

 …(2.3J) 

Constant are determined by using boundary conditions (2.3B) that are 
 1,1 1,1f (1) 0 f ( 1) 0     

 ' '
1,1 1,1f (1) 0 f ( 1) 0     

Solution (2.3J) satisfying these conditions is 

 1,1 1 2 3f Dsin h Mz a a z a zcosh Mz      

 
1,12

4 2

h z1
sinh 2Mz 9Mz a z sinh Mz

2 M
  

 …(2.3K) 

  '
1,1 1 2 3f DM cos h Mz a a a Mzsin h Mz cos h Mz       

 
1,12

4 2

h
Mcosh2Mz 9M a (2zsinhMz z McoshMz)

M
      …(2.3L) 

Where 

  1
3

a 1
D a Msin h M 2Mcos h 2M sin h 2M

K 2
  

 

                                          4a Mcosh M sin h M    

 2
1,1 1h DM sin h M a    

                               2 3 4
1

a a cosh M sin h 2M 9M a sin h M
2

      
 

 
2

1
A

a
12M

  

 2
2a 6M cos h M   

 3a 15Mcos h M   
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 2
4a 3M cos h M  

 K sin h M M cosh M   

and 
M

A
M cosh M sin h M




 

Solution for System II : 
Since from equation (2.3A), we have 

 1 1,0 1,1 1,22

1 1
f f f f

N N
        …(2.3M) 

 0 0,0 0,1 0,22

1 1
f f f f

N N
     …(2.3N) 

and 0 0,0 0,1 0,22

1 1
h h h h

N N
     …(2.3O) 

Substituting the expansions of f-1, f0 and h0 from (2.3M), (2.3N) and (2.3O) in the 
equation (2.2T) and equating the coefficient of like power of 1/N. The gives us the following 
set of linear ordinary differential equations 

 ''' 2 '
0,0 0,0 0,0f M f h   …(2.3P) 

  ''' 2 ' 2 ''
0,1 0,1 0,1 1,0 0,0f M f h M f f    …(2.3Q) 

Solving (2.3P), we get 

 
0,0

0,0 7 8 9 2

h z
f (z) C C cosh M z C sin h M z

M
     …(2.3R) 

Constant are determined by using boundary conditions (2.3B) that are 
 0,0 0,0f (1) 1 f ( 1) 1     

 ' '
0,0 0,0f (1) 0 f ( 1) 0    

The solution (2.3R) of equation (2.3P) satisfying these boundary conditions is  

  0,0
A

f Mzcosh M sin h Mz
M

   …(2.3S) 

 '
0,0f A(cosh M cos h Mz)   …(2.3T) 

where 
M

A
M cosh M sin h M




 

and 
3

0,0
M

h
tan h M M




 

Again solving equation (2.3Q), we get 

 
0,1

0,1 10 11 12 2

h z
f (z) C C cosh Mz C sin h Mz

M
      

 2
1 2 3b b z sin h Mz b z cosh Mz sin h 2Mz 6Mz      …(2.3U) 

Constants are determined by using boundary conditions (2.3B), that are 

 ' '
0,1 0,1f (1) 0 f ( 1) 0    

 0,1 0,1f (1) 0 f ( 1) 0    

The solution (2.3U) of equation (2.3Q) satisfying these boundary conditions is 

 
0,1

0,1 12

h z
f (z) Esin h Mz b

M
    

 2
2 3b z sin h Mz b zcos h Mz sin h 2Mz 6Mz      …(2.3V) 
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0,1'

0,1 2

h
f (z) EMcos h Mz

M
   2

1 2b b 2zsin h Mz z M cos h Mz   

  3b zMsinh Mz cosh Mz 2M cosh 2M 6M      …(2.3W) 

where 

 1
2 3

b
E b sinh M M cosh M b Msinh M 2M cosh 2M sin h 2M

K
         

 2 2
0,1 1 2 3h EM sinh M b M b sin hM b cos h M sin h 2M 6M      

 
2

1
A

b
12M

  

 2
2b 3M cosh M  

 3b 9M cosh M   

 K sinh M M cosh M   

and 
M

A
M cosh M sinh M




 

Solution for system III : 
Since from equation (2.3A), we have 

1 1,0 1,1 1,22

1 1
f f f f

N N
        …(2.3X) 

0 0,0 0,1 0,22

1 1
f f f f

N N
     …(2.3Y) 

1 1,0 1,1 1,22

1 1
f f f f

N N
     …(2.3Z) 

and 

1 1,0 1,1 1,22

1 1
h h h f

N N
     …(2.3AA) 

Substituting the expansions of f-1, f0, f1 and h1 from (2.3X), (2.3Y), (2.3Z) and 
(2.3AA) in equation (2.2U) and equation the coefficient of like power of 1/N. This gives us 
the following linear ordinary differential equations 

2''' 2 ' '
1,0 1,0 1,0 0,0f M f 2h f     …(2.3BB) 

Solving (2.3BB), we get 

1,0
1,0 13 14 15 2

2h z
f C C cosh Mz C sinh Mz

M
     

 1 2 3e e zcosh Mz e z 6Mz sinh 2Mz     …(2.3CC) 

Constant are determined by using boundary conditions (2.3B) that are 

0,1 0,1f (1) 0 f ( 1) 0    

' '
0,1 0,1f (1) 0 f ( 1) 0    

The solution (2.3CC) of equation (2.3BB) satisfying these boundary conditions is  

1,0
1,0 2

2h z
f Fsin h Mz

M
   

  1 2 3e e z cosh Mz e z 6Mz sinh 2Mz     …(2.3DD) 

1,0'
1,0 2

2h
f FMcosh Mz

M
   

         1 2 3e e zM sinh Mz cos Mz e 6M 2M cosh 2Mz         …(2.3EE) 
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where   1
2

e
F e Msin h M 2M cosh 2M sin h 2M

K
    

  1,0
1 2 32

2h
Fsin h M e e cos h M e 6M sin h 2M

M
       

 
2

1 3

A
e

12M
  

 2e 12M cos h M  

 2
3e 12M cosh M  

 K sin h M M cosh M   

and 
M

A
M cosh M sin h M




 

Using equations (2.3H) and (2.3K) in equation (2.3A) 

  1 1
A 1

f Mz cos h M sin h Mz Dsinh Mz a
M N

      

2
2 3 4

1
a z a zcosh Mz sin h2Mz 9Mz a z sin h Mz

2
     
 

1,1

2

h z

M
 

 

   

  …(2.3FF) 
Using (2.3S) and (2.3V) in equation (2.3A) 

  0,1
0 2

h zA 1
f Mzcosh M sin h Mz Esin h Mz

M N M


   

 

     2
1 2 3b b z sin h Mz b z cos h Mz sin h 2Mz 6Mz        …(2.3GG) 

Using (2.3DD) in equation (2.3A) 

1,0
1 2

2h z
f Fsin h Mz

M
   

  1 2 3e e zcos h Mz e z 6Mz sin h 2Mz     …(2.3HH) 

It is observed from the above solution (2.3FF), (2.3GG), (2.3HH) that they are 
independent of Re(source Reynolds number). This is because Re appears neither in the 
differential equation nor in the boundary conditions f0, f-1, and f1 represents the solutions for 
laminar source flow between porous disks. 
 
                                           4. DISCUSSION OF RESULTS 
 
Velocity Distribution : 

The component of radial velocity, in terms of the average radial velocity, is given by 

 
2

e e' ' '
1 0 12 2

2
e

2

1 M R R
f f f

u 2 N r r
u*

1 M Ru
r

2 N r


      

    
 



 …(2.4A) 

where  
1 2

e
2

0

1 M R
u u dz r

2 N r
     

is evaluated using the expression given by (2.3FF), (2.3GG) and (2.3HH). 

The radial velocity distribution for *
eR  = 1, RW = 0, 2.00 and – 2.0 and M2 = 0, 16, 

64, 256 are shown in fig. (2 to 4). The velocity distribution for    RW = 0 (fig. 4) corresponds 
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to the source flow between non-porous disks. It is observed that the effect of injection, for 
small values of M, it to increase the maximum velocity at z = 0, whereas, suction has an 
opposite effect on the radial velocity distribution. For higher value of M(M2 = 256). We find 
that for both suction and injection, the radial velocity at z = 0 has more or less the same value. 
We also find that the radial velocity has a uniform value in the main body of the fluid and the 
variation in radial velocity are confined to boundary layers near the walls. On the other hand, 
in the absence of magnetic field (M2 = 0) the radial velocity distribution are parabolic for both 
suction and injection. 

The perturbation term '
0,1f  due to interaction between the source free flow and the 

source flow is presented together with '
1,0f  in fig. 5. It is found that '

0,1f  is two to three orders 

smaller than '
1,0f  and the terms '

1,0f  and '
0, 1f   exhibit the characteristic flattening of the 

distribution due to magnetic field. 
The existence of an inflection point in a flow field is important for the stability 

consideration. Hence the conditions required for the presence of an inflexion point have been 

examined. The value of critical Reynolds number *
ecR  below which no inflexion point exists 

at the disks is obtained from the condition that 

 
2

2
z 1

u
0

z 

 
  

 

i.e. 
2''' * *

W 1 e 0 1ec c

1
R f ( 1) R f ( 1) R f ( 1) 0

2
        …(2.4B) 

Solution of (2.4B) for various values of Rw is shown in table (2.1). It is observed that 

for small value of M2, *
ecR  is higher than the corresponding hydrodynamics values. As M2 

increases, the value of *
ecR  decreases. It is also observed that for injection *

ecR  is smaller 

than that of the value for flow between non-porous disks i.e. for Rw = 0. The opposite is true 
for suction. 
Pressure Distribution : 

Using equation (2.3A) and equation (2.2S) in (2.2M), the total expression for pressure 
distribution is 

2 2
2

1,0 1,1
1 M 1 M

P(r,z) r h h
4 N N N

 
    
 

 

 
2

' ' 2 2
1,0 1,1 1,0 1,11,0 1,12

1 1 M 2 1
f f f f f f

N 2 N N N
    

         
 

 e
e 0,0 0,1 1,02

1 R
R h h log r h Constant

N r

         
 …(2.4C) 

where the constant is determined from the condition that the pressure is known at a 
point in the flow, this can be understood by the following : 

2 4
2

1,0 1,1 2

1 M 1 1 M
P(R,1) R h h

4 N N 2 N
 

    
 

 

 e
e 0,0 0,1 1,02

1 R
R h h log R h Constant

N R

         
 …(2.4D) 

since '
1, 1,1 1,0f (1) 0 f (1) 0 and f (1) 1       

Hence the expression for the pressure distribution is 
2

1,0 1,1
1 M 1

P(r,z) P(R,1) h h
4 N N

 
     
 
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2

2 2 ' '
1,0 1,1

M 1
(R r ) f f

N N
 

  
 

 
2

2 2
1,0 1,11,0 1,12

1 M 2 1
f f f f 1

2 N N N
  

      
 

 
2

e
e 0,0 0,1 1,02 2

1 R R R
R h h log h 1

N r R r

             
 …(2.4E) 

The pressure drop in the radial direction at the disks is 
2

2 2
1,0 1,1

1 M 1
P* P(r,1) P(R,1) h h (R r )

4 N N
 

       
 

 

 
2

e
e 0,0 0,1 1,02 2

1 R R R
R h h log h 1

N r R r

             
 …(2.4F) 

The inertia less or creeping flow pressure drop in the radial direction is obtained by 
neglecting the contribution form inertial term in (2.4F) and is given by 

2
2 2

1,0 e 0,0
1 M R

P* P(r,1), P(R,1) (h )(R r ) R (h ) log
4 N r

       …(2.4G) 

The pressure distribution is presented in fig. 6, for Re = 3 × 104, R = 240 and various 
values of Rw. Comparing our results with those of Elkouh [11], we find that even though the 
pressure distributions are similar there is a change in magnitude of order one due to magnetic 
field. The inertia terms cause a decrease in pressure in the radial direction. 
Skin Friction : 

The dimensionless shear stress at the upper disks is given as 

0
z 1

u

z 

     
 …(2.4H) 

In equation (2.4H) using the expression of u from equation (2.2N) 

2
e'' ''

0 1,0 1,1
1 M 1 R

r f f
2 N N r

 
         

e'' '' ''
0,0 0,1 1,02

z 1

1 R
f f f

N r


     
  

 …(2.4I) 

The inertia less shear stress at the upper disk, which is obtained by neglecting the 
contribution from inertia terms in (2.4I) is 

2
e'' ''

0 int ertialess 1,0 0,0
z 1

1 M R
( ) r f f

2 N r




      
 …(2.4J) 

The shear stress ratio 

0*
0

0 int ertialess( )


 


 …(2.4K) 

is evaluated for *
eR  = 0, 1, 2 and 3, Rw = 0, + 2 and – 2 and M2 = 4, 16 and 256. The 

results are presented in table (2.3). 

We observe that the shear ratio increases with an increase in M for a given *
eR  and 

Rw. It decreases with an increase in *
eR  for given M and Rw, except in the case of M2 = 256, 

Rw = ± 2 the shear stress ratio first increases and then decreases. Comparing with the results 
of the hydrodynamic case. We find that the shear stress ratio in our case decrease very slowly 

with *
eR  for a given M and Rw and the incipient flow reversal (i.e., *

0  = 0) occurs at very 

large values of *
eR  for M2 = 4, it occurs at *

eR  = 12 approximately and for M2 = 16, it occurs 

at *
eR  = 25. 

 
Table 2.1 
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M2 = 0 M2 = 4 M2 = 15 
Rw *

ecR  Rw *
ecR  Rw *

ecR  

0.0 1.7219 0.0 5.5172 0.0 3.2261 
0.5 1.5272 0.5 4.5993 0.5 1.2252 
1.0 1.3842 1.0 3.3113   

- 0.5 1.9522 - 0.5 6.2121 - 0.5 4.6664 
- 1.0 2.2077 - 1.0 6.7232 - 1.0 5.9883 

 
Table 2.2 

M2 = 4 
*
eR  Rw = 0 Rw = + 2 Rw =  2 

0 1 0.7821 1.2742 
1 0.9640 0.7587 1.1831 
2 0.9230 0.7230 1.0863 
3 0.8428 0.6688 1.0132 

 
M2 = 16 

*
eR  Rw = 0 Rw = + 2 Rw =  2 

0 1 0.8431 1.1541 
1 0.9819 0.8219 1.1423 
2 0.9511 0.7912 1.1103 
3 0.9194 0.7577 1.0812 

 
M2 = 256 

*
eR  Rw = 0 Rw = + 2 Rw =  2 

0 1 0.9352 1.0600 
1 0.9984 0.9369 1.0612 
2 0.9965 0.9363 1.0571 
3 0.9942 0.9344 1.0543 

 
 

Table 3 
Shear Stress Ratio 

M2 = 4 
Rw = 0 Rw = + 2 Rw =  2 

Re
* e

* Re
* e

* Re
* e

* 
0 1 0 0.7821 0 1.2742 
1 0.9640 1 0.7587 1 1.1831 
2 0.9230 2 0.7230 2 1.0863 
3 0.8428 3 0.6688 3 1.0132 

 
M2 = 16 

Rw = 0 Rw = + 2 Rw =  2 
Re

* e
* Re

* e
* Re

* e
* 

0 1 0 0.8431 0 1.1541 
1 0.9819 1 0.8212 1 1.1423 
2 0.9511 2 0.7912 2 1.1130 
3 0.9194 3 0.7577 3 1.0812 

 
 
 
 

M2 = 256 
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Rw = 0 Rw = + 2 Rw =  2 
Re

* e
* Re

* e
* Re

* e
* 

0 1 0 0.9352 0 1.0600 
1 0.9984 1 0.9369 1 1.0612 
2 0.9965 2 0.9363 2 1.0571 
3 0.9942 3 0.9344 3 1.0543 

 
                                          5. CONCULSTIONS 

 
Navier-Stokes equations have been solved for the problem of conducting laminar 

source flow between two infinite non-conducting disks. The solution obtained embodies the 
solution for the source free flow between porous disks as well as that for source flow between 
non-porous disks. The results of the present investigation may be summarized as follows : 

(i) For small values of M fluid injection increases the maximum radial velocity while 
suction decreases the maximum radial velocity. 

(ii) For large value of M, the magnitude of radial velocity is more or less the same in 
all the three cases viz., the source flow between porous disks with suction or injection and 
source flow between non-porous disks. 

(iii) Inertia brings about a decrease in pressure drop in the radial direction, which is 
opposite to the effect observed in the source free flow. 

(iv) The radial velocity distribution in the case of the source flow exhibit inflexion 
points. For small values of the imposed magnetic field the inflexion points occur at higher 

values of *
ecR  compared with hydrodynamic case. For a given Rw, as magnetic field 

increases, the value of *
ecR  decreases. 

(v) For a given Rw, the value of *
eR  at which incipient flow reversal occurs increases 

with increase in magnetic field. 
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