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Abstract: Paper In this Digital Era security is the important
concern. The more using digital communication and digital fraud
also becomes more. When the technology grows in a faster pace,
another side fraudsters also becoming strong and fast. Customers
have to be very careful using their user’s name, password, pin
number, OTP etc. Without Customers knowledge the fraudsters
are stealing their secured details. Industry also spending more
time, effort and money to stop/reduce these illegal attempts
keeping their client’s security. But unfortunately, still there’s a
loop hole we are facing and fraudsters are well ahead in their job.
AI&ML is the endowment in this current digital technological
world. This niche technology can be used Finance, Medical,
Insurance, Ecommerce almost across all the domains. Each
company/industry has its own security approaches for providing a
safe environment to their clients. Here, suggested solution aims to
create a global centralized framework for sharing their fraud
patterns by getting into a Digital handshake across the
organization from various domains. Here AI&ML algorithms
helps to detect and prevent fraud attacks intelligently. These
algorithms help to find out all the hidden patterns. Choosing the
right algorithm definitely it improves the detecting and preventing
the fraud patterns and also gives secured environment to the
customers.

Keywords: Artificial Intelligence, Machine Learning, Fraud
Detection, Prevention, Credit Card

I. INTRODUCTION

Cyber Security is the major concern when an information is
conveyed across a medium in our technological era, the
applications we use keep on changing in a daily basis. The
digital transition is greatly assisting all sectors. At the same
time, we leave our digital footprints wherever and whenever
we go. It makes users extremely cautious about their
credentials. Users want us to be proactive in preventing fraud.
In this paper, we will examine how to improve security
features. However, scammers do not lag behind when it
comes to embracing new technologies. Corporates must make
sure that their security measures stay up with their operations
with the innovated solutions.

A large number of fraudulent transactions occur in the
banking sector on a daily basis. As an example, if we take
only credit/debit card fraudulent transactions, the fraud will
be notified to the appropriate bank management. As a
temporary solution, the bank has blocked the specific
customer’s card from future transactions and advised the
customers to reset his password and other sensitive details.
Only after that did the specific bank/corporate begin
investigating how this fraudulent activity occurred, and what
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strategy the thieves employed to breach the client account.
Once the pattern is detected, the banking/corporate sectors
will endeavor to close loopholes and implement the required
security measures to effectively stop the same pattern-related
malicious activity. Meanwhile, criminals would have
committed several fraudulent transactions following the same
pattern, resulting in massive losses.

Fraudsters are constantly inventing new ways of accessing
banks and their customers in the context of a rapidly changing
global financial market, where demand for face-to-face banks
is falling, volumes of online wallets are expanding, and
transactions are made in seconds. Banks must be adaptable in
responding to emerging dangers and embracing new
strategies and technologies in order to foresee and prevent
fraud.

Financial firms' greatest threat is cyber-related theft. To limit
fraud risks in the future, financial institutions will need to
make a massive change in their approach. Fundamentally,
financial institutions must comprehend the rapid digital
revolution occurring all around us, recognize the resulting
evolving fraud threats, and create fraud risk management
practices capable of mitigating these fraud risks in a
consistent, efficient, and intelligent manner. Existing
financial institution solutions, while expensive to operate, are
not capable of coping with rising fraud concerns because they
are too scattered and unsophisticated. Computer fraud risk
management in the future should be able to adapt to the
rapidly evolving digital transformation, discover previously
unidentified fraud threats, take advantage of technology, and
reduce compliance costs. Fixed deposits, loan disbursement
or granting credit facilities for bribery, hacking and other web
ATM-based scams are some of the latest fraud instances in
India covered by the media. These high-profile incidents in
recent years have demonstrated that scams may harm an
organization's brand as well as its earnings, operating
efficiencies, and customer satisfaction. It can have a severe
influence on staff morale and confidence of investors, in
addition to potential regulatory sanctions. Although no
business can completely eliminate the risk of fraud, it is
critical to have procedures in place that can prevent and detect
fraud.

The following is the structure of this paper:

The Solving the Global Issue and Data Preprocessing are
discussed in section 2. Various Machine Learning Algorithms
and Comparison of Algorithms are discussed in section 3.
Proposed Enhanced ML Algorithm steps are detailed in
section 4. The Results and Discussions are stated in Section
5.
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1. SOLVING THE GLOBAL ISSUE

After fraudulent activity reported, fraudulent transactions are
identified by the employer of the organization. This
information/pattern can be saved in a centralized database.
Based on this experience security of the organization can be
improved. Each company has its own security approach for
providing a safe environment for its clients. In my previous
papers suggested a solution aims to create a centralized global
framework for sharing fraud patterns, allowing any business
to retain and see fresh fraudulent transactions carried out by
criminals.

Geotagging, IP Address, Date, Time, as well as other fraud-
related information may all be maintained in a record, just
like any other fraud transaction. We might reach a digital
agreement between organizations across the domains. These
organizations can share the knowledge in a standard format
by the industry who signed the agreement. Now that all fraud
transactions are visible to everyone, the surviving
organizations may take preventative security measures to
avoid large losses. A fraudster's relationship with a victim
may be compared to a cat-and-mouse fight, in which each
side is constantly learning and adapting, employing
inventiveness and understanding of the other's objectives to
develop new fraud prevent and detect techniques. In this
paper discussed how to get to fast and accurate fraud
detection solution by using the proposed enhanced machine
learning algorithms in real time.

A. Importance of AI-ML Algorithms in Solving the
Global Issue

Machine Learning is a subset of Al It has 3 types of
algorithms such as supervised, unsupervised and
reinforcement learning algorithms. The Supervised
Algorithms address regression and classification/anomaly
findings problems. The unsupervised algorithms help to
cluster unlabeled components. Reinforcement Learning helps
the industry to address action-reward-punishment
environment-based issues. It helps the model to learn and
correct the error on its own. The Credit Card Fraud Detection
system uses supervised algorithms such as Logistic
Regression, Naive Bayes and Support Vector Machine
(SVM) to identify the fraud transactions. The Anomaly
detection is a kind of classification model, where the
sensitivity is key to find the anomaly. In general, if the model
threshold is greater than 0.5, then it will classify it as
+positive case but here the sensitivity/recall/true positive rate
is very important to classify +ve/-ve transactions.

Machine Learning Techniques in Ai Technology now give
intelligent answers to the majority of issues of human and
traditional approaches in FP & FD. In the past, industries
relied on their employees and their traditional methodology
to FP & FD. The government, as well as all the private sector
organizations, is investing more money on fraud prevention.
The algorithms are created by fraud domain specialists in the
traditional method. The algorithms and procedures are strictly
based on rules. Traditional methods are no longer sufficient
to address this issue. This is the current state, and it’s clear
existing FP & FD operate in a soiled approach. Its more over
reactive rather than proactive mode. Recovery time of fraud
issues are more and not real time. We don’t learn from our
history. We don’t learn from our/another business verticals.
Industry has to work well ahead of fraudsters. Because of the
popularity and precision of Artificial Intelligence, every
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sector 1s currently transitioning trom the traditional approach
to ML-based solutions for FP & FD.

Fraud detection and prevention algorithms surely find out the
hidden and new patterns based on the experience. It is a
continuous learning procedure. It needs full life cycle which
includes monitoring, learning, identifying, preventing, and
decision-making in real time. Fraudulent transactions may be
prevented and detected using the correct Supervised and
Unsupervised learning algorithms. The benefit is that we may
use either of the models individually or in combination to find
abnormalities.

B. Proposed Global Fraud Prevention High Level
Architecture

Transaction information is published and stored in a
centralized database. The Global Fraud Prevention High-
Level Architecture is depicted in the above Figure. The
source organization with a NO or YES for the "fraud help
indication." A "NO" would indicate that the publishing
company has previously detected a transaction as fraudulent
and shared this information in the centralized database for
information purposes. This will help other companies
involved in this experiment avoid similar suspicious
transactions using the same patterns in the future. A “YES”
would indicate that the publishing organization’s is looking
for an indicator from the Global model to allow or prevent the
transaction from being completed in real-time.

Global Fraud Prevention High Level Architecture

Fig. 1.Proposed Global Fraud Prevention High Level

Architecture- Level I
Similarly, remaining participating organizations in this
digital handshake can communicate information across
sectors. It aids in the prevention and detection of fraudulent
transactions worldwide. The accuracy of a model is
determined by the number of data sets utilized for training
and testing. The model, once trained, can detect and prevent
fraud patterns. Based on the fraud indicator signal supplied
by the model, parent apps hosted by the company where the
fraud originated can prevent the transaction from successfully
completing or execute extra security validations before
allowing the transaction to pass through. Using the suggested
global architecture model, newly discovered fraud tendencies
may then be shared across enterprises, allowing for proactive
fraud prevention. Thereby its extremely important for
organizations to join hands together in proactively preventing
fraud Globally.
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Data set represents real-world data. This data set contains all
e credit card transactions. It’s an imbalanced data set.
< wianen e It has 30 features and 1 target. Of 30 features, 28
features are labelled V1 to V28.
e The remaining 2 features are Time and Amount.
e The 28 features are in the form of PCA complaint.
% % e  Both Amount and Time are not normalised, that is,
not in line with other variables in terms of scale.

Exploratry Data

Centralized Database
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Fig. 2.Proposed Global Fraud Prevention High Level
Architecture- Level 11
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4. Concatenate both Scaled Amount and Time with Actual
Dataset/frame. Identifying Fraud Transactions
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6. Random under-sampling function
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D. Data Preprocessing

Steps in Data Pre-processing in Machine Learning Fig. 5. Data Preprocessing Fraud Transactions Class 0

1. Obtain the dataset Fraud transactions are very less comparing to normal

2. Add all necessary libraries transactions. Feature class is the respective variable it takes
3. Load the dataset 1 in case of fraud transaction and 0 in case of good

4. Recognizing and dealing with missing values transaction. We have to handle this imbalanced data set first.

5. Categorical data encoding

6. Dividing the dataset Removing Duplica

7. Scaling of features e Ea Ve e
Because of their varied origin, the bulk of real-world datasets e
for machine learning are very sensitive to absent, irregular,
and incomplete data. As a result, data preprocessing is critical
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Implementation of Dataset
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Fig. 6 . Data Preprocessing Removal of Duplicate Record
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Fig. 7 . Data Preprocessing After Removal of Duplicate
Records

In data preprocessing we will often need to find out the
duplicate data rows and how to handle them. Finding the
duplicate data , counting the duplicate and non-duplicate
datas, extracting the duplicted rows with correct location ,
determining to keep the remaining rows and drop the
duplicated rows. Similarly we can consider and do the
columns as well by dropping duplicates.

Describing Dataset Descriptive Statistics

Dataset description helps to understand how datas have been
collected in a defined structure. Each row and column
describes a particular variable like mean, count, standard
deviation, percentiles and minimum-maximum value ranges
are included. We can get a descriptive statistics summary of
given data frame.

B4+ > 2B 4% PRn BCH o

Dataset Descriptive Statistics

Fig. 8 . Data Preprocessing- Dataset Descriptive Statistics

Heat Map

Heat map can infer features are not correlated mostly that
means the variation of one feature minutely affects the other
feature that either has a positive or a negative correlation
with each other.
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Fig. 9 . Data Preprocessing — Heat Map of the Dataset

III. MACHINE LEARNING ALGORITHMS

A. Support Vector Machine Algorithm:

The SVM method is best understood by concentrating on its
fundamental kind, the SVM classifier. The SVM classifier is
designed to create a hyper-lane in an N-dimensional
environment that splits pieces of data into multiple groups.
This hyperplane, however, is chosen based on margin, as the
hyperplane with the greatest margin between the two classes
is evaluated. These margins are determined using Support
Vectors, which are data points. Support Vectors are data
points that are close to the hyperplane and aid in its
orientation.

If the operation of an SVM classifier needs to be understood
theoretically, it may be divided into the following steps -
Step 1: The SVM algorithm predicts the classes. One of the
classes is labelled as 1, while the other is labelled as -1. Load
the necessary libraries.

Step 2: Import the dataset and extract the X and Y variables
independently.

Step 3: Separate the dataset into train and test subsets.

Step 4: Set up the SVM classifier model

Step 5: SVM classifier model fitting

Step 6: Making predictions

Step 7: Assessing the model's performance

When there is no mistake in the classification, the gradients
are just updated using the regularization parameter, whereas
the loss function is additionally employed when
misclassification occurs.

B. KNN Algorithm:

K Nearest Neighbors is a simple method that uses a similarity
metric to predict the categorization of unlabeled data. We
calculate the distance between the points when two
parameters are shown in a 2D Cartesian system to get an idea
of how similar they are. The KNN algorithm is based on the
idea that similar objects are close to one another.

The K Nearest Neighbors method is one of the most basic and
straightforward classification techniques. Based on how it
operates, it is also classified as a "Lazy Learning Algorithm."
The K-value that everyone achieves while training the model
is usually an odd integer, however this is not required.
However, there are a few drawbacks to employing KNN. A
few of them are as follows:
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e |t is incompatible with categorical data because we
cannot determine the distance between two category
characteristics.

e [t also does not perform well with high-dimensional
data since the algorithm will struggle to calculate the
distance in each dimension.

The KNN Algorithm in Python: A Step-by-Step Guide

Step 1: Import Libraries. Importing the libraries required to
execute KNN is demonstrated below.

Step 2: Import the Dataset We can see the dataset being
imported here....

Step 3: Split the dataset...

Step 4: Design a Training Model.

Step 5: Make Running Predictions.

Step 6: Validation Check.

C. Random Forest Algorithm:

Random Forest operates in two stages: First Step:
Generating the random forest by combining N decision trees.
Second Step: Making predictions for each tree generated in
the first step. Random Forest is a classifier that uses a several
decision trees on various subsets of a given dataset and
averages them to enhance the predicted accuracy of that
dataset. "Rather than depending on a single decision tree, the
random forest calculates the forecast from each tree and
choosing the final output result based on the majority vote of
predictions." The greater number of trees in the forest, the
stronger the precision and smaller the chance of errors.

The steps to illustrate the working process:

Step 1: Select M data points at random from the training set.
Step 2: Generate decision trees for the specified data points
(Subsets).

Step 3: Construct the N number of decision trees

Step 4: Reverse steps 1 and 2.

Step 5: Find each decision tree predictions for new data points
and allocate the new data points to the category that has
received the most votes.

Random Forest Algorithm Implementation

1. Pre-Processing of Data

2. RFA fitting to the training set

3. Estimating the Test Set outcome

4. Creation of the Confusion Matrix

5. Visualizing the Training Set's Outcome

6. Projecting the results of the test set

D. Comparison of Machine Learning Algorithms

There are two distinctions in the efficiency of random forest
and gradient boosting. The random forest can create each tree
individually, but gradient boosting can only build one tree at
a time, hence the random forest performs worse than gradient
boosting. Random Forest is designed for multi-class issues,
whereas SVM is designed for two-class problems. Multiclass
problem must be divided into numerous binary classification
tasks. Random Forest performs effectively when
characteristics are both categorical and numerical. We all
know that KNN is a lazy learner, it memorizes the
information, resulting in a 0-training time. Due to the fact that
it does not train for parameters or weights.

While predicting, it really does all of the work. It has a
complexity on the order of n * m *d, where n is the volume
of the training data, m is the amount of the test data, and d is
the number of operations that can be performed for every test.
So, after approximately 10 minutes, it stops making
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predictions. As seen above, Decision lree completed
instantaneously with 85 percent accuracy, KNN with 92
percent accuracy but significant running time and consuming
resources all along and Random Forest with 93 percent
accuracy and very little running time.

Table 1.Comparsion of various ML Algorithms for Data
Set-1

SNO | ALGO | C| PR | REC | ACCUR | F1
RITH | LI EC | ALL | ACY SCO
S | ALGQy| CLA 4 [PRECIS | REC | ACCU| RE1
N | RITH SS S l@N ALL | RACY| | SC
0| M q OR
1 SVM ol100l100 11do ks
1] SVM 0 11 1T¥Yq | o 75-UU0n d51.00 0.7
2 Logisti [ ol PPBo | 10051 ¢oY-76 GI)
2 | Logisty g 11 1T®84 | g 41000 ¢71.00 0.7
CReF any o Usao | 1.0d-6P1 gau-/2 4o
3 KNN 0 1 ld)g() 0 Rl’UUﬂ }LUU 0.8
Rando | o/ Y¥do | 1.0d-/01 oU-33 43
4 Random 0 1 16)@7 0 Rl’UUﬂ ')LUU 0.8
m T 94 077 085 9

Table 2 .Comparsion of various ML Algorithms for
Data Set-2

E. Confusion Matrix

70000
60000
0 - 71044
50000
2 40000
0
L]
-~ 30000
1 20000
10000
0 1
Predicted label
Fig. 10 .Confusion Matrix
Precision:

Precision is one of the indicators of ML Algorithms model’s
performance i.e., the Quality of the positive prediction made
by model. The number of true positives divided by the total
number of positive predictions.

Recall:

The number of true positives divided by the number of
positive values in the test data. Low Recall indicates a high
number of false negatives.

F1-Score:

The weighted average of precision and recall.

Confusion Matrix:

A table showing correct predictions and types of incorrect
predictions

PAGE NO: 32



International Journal of Pure Science Research

Prediction
Actual 0(Negative) 1(Positive)
0(-ve) TN (True | FP (False
Negative) Positive)
1(+ve) FN (False | TP (True
Negative) Positive)
TN+TP

Accuracy = TN+TP+FP+FN @)

TP
Precision= FP+TP ()
TP
Recall =TP+FN (3)
Precision+Recall
FI Score = 2* Precision+Recall 4)
Precision: Recall: Accuracy: F1
0.746 0.837 0.999 Score:
0.789

Table 3 . Performance Results

IV. PROPOSED ENHANCED RANDOM FOREST
ALGORITHM

Above steps mentioned in II-D more over standard way of
how machine learning algorithms works. Since proposing
global model solution, it is important that algorithms used
here are efficient and speed in real time. Need of the hour is
enhanced machine learning algorithm for best performance.
Performance has been improved in Random Forest Algorithm
by selecting the wise trees alone to predict accurately in terms
of identifying fraud attacks.

Revised Steps wise execution for Proposed Model

1. Load Dataset into the system.

2. Class Count function to check if the dataset is balanced or
imbalanced

3. Scale Non- Anonymised features such as Time and
Amount

4. Concatenate both Scaled Amount and Time with Actual
Dataset/frame.

5. Drop old Amount and Time features

6. Random under-sampling function

6.1 Split the scaled dataset into Train and Test

6.2.Reset index of scaled train and test dataset

6.3.Find no of fraud transactions in the (random) Training
dataset
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6.4.5egregate normal and traud transactions trom the
training data

6.5.Randomly selecting the same no of normal transactions
as fraud transactions

6.6.Reset Index of both selected normal and fraud
transactions

6.7.Concatenate both selected normal and fraud transactions.
6.8.Shuffle the subsample/final data frame.

7.Remove extreme outliners and create final dataset
8.Split final dataset into Train and Test

9.Spot-check a couple of Classification Algorithms (using
cross validation)

10. Make Predictions on Test data

11. Tune the Global model with Enhanced Random
Forest Algorithm

12.End

V. RESULTS AND DISCUSSION

Early detection, achieved by improving algorithms to detect
both developing risks and the actions of fraudster, may be a
critical step toward minimizing and reducing losses. On an
enterprise-wide scale, incident detection that integrates
complicated, adaptive, signaling, and reporting systems may
automate the correlation and analysis of enormous volumes
of data across the sectors, as well as numerous danger
indicators. Monitoring systems in organizations should be
operational 24/7, seven days a week, with enough support for
fast incident response and remediation processes. A thorough
awareness of recognized risks and controls, as well as
industry norms and laws, may help financial services
businesses protect their systems through the design and
implementation of proactive, risk-informed controls. Based
on best practices, banks can implement a "defense-in-depth"
strategy to combat known and developing threats. This entails
sharing common security layers, both to offer stability and to
potentially impede, if not prevent, the advancement of
ongoing threats.

To summarize, firms cannot manage fraudulent transactions
in silos any more. Operating in silos will cost enterprises
throughout the world trillions of dollars in lost revenue.
Increased preventative measures must be considered and
implemented, and the idea of centrally keeping and managing
fraud data would meet this demand. Simply allowing
organizational systems to communicate and learn from one
other fast will dramatically lessen the impact of fraud,
therefore actively limiting fraudsters from attacking them.
This proposed framework accomplishes this by allowing
organizations to safely access the central database via
exposed API (Application Program Interfaces) for every
payment in their system, inspecting for fraud while also
sharing any new transactions to centralized repository for
other organizations to benefit in real time. In this regard, three
distinct models — Support Vector Machine, KNN, and
Random Forest have been tested by using historical data thus
far. Random Forest appears to be producing good results,
with the highest success rate among the algorithms tested.
With the correct technology in place, firms can work together
to avoid fraud by sharing their fraud experiences and
employing the latest and best strategies.
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